Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						be07910
	
1
								Parent(s):
							
							cb91aa8
								
qqqq
Browse files
    	
        minigpt4/configs/models/minigpt_v2.yaml
    CHANGED
    
    | @@ -11,7 +11,7 @@ model: | |
| 11 | 
             
              # generation configs
         | 
| 12 | 
             
              prompt: ""
         | 
| 13 |  | 
| 14 | 
            -
              llama_model: / | 
| 15 | 
             
              # llama_model: "/home/user/project/Emotion-LLaMA/checkpoints/Llama-2-7b-chat-hf"
         | 
| 16 | 
             
              lora_r: 64
         | 
| 17 | 
             
              lora_alpha: 16
         | 
|  | |
| 11 | 
             
              # generation configs
         | 
| 12 | 
             
              prompt: ""
         | 
| 13 |  | 
| 14 | 
            +
              llama_model: "ZebangCheng/Emotion-LLaMA"
         | 
| 15 | 
             
              # llama_model: "/home/user/project/Emotion-LLaMA/checkpoints/Llama-2-7b-chat-hf"
         | 
| 16 | 
             
              lora_r: 64
         | 
| 17 | 
             
              lora_alpha: 16
         | 
    	
        minigpt4/conversation/conversation.py
    CHANGED
    
    | @@ -12,6 +12,7 @@ import torch | |
| 12 | 
             
            from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
         | 
| 13 | 
             
            from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
         | 
| 14 | 
             
            from transformers import Wav2Vec2FeatureExtractor
         | 
|  | |
| 15 |  | 
| 16 | 
             
            import dataclasses
         | 
| 17 | 
             
            from enum import auto, Enum
         | 
| @@ -263,11 +264,13 @@ class Chat: | |
| 263 | 
             
                        # model_file = "checkpoints/transformer/chinese-hubert-large"
         | 
| 264 | 
             
                        model_file = "ZebangCheng/chinese-hubert-large"
         | 
| 265 | 
             
                        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_file)
         | 
|  | |
| 266 | 
             
                        input_values = feature_extractor(samples, sampling_rate=sr, return_tensors="pt").input_values
         | 
| 267 | 
             
                        # print("input_values:", input_values)
         | 
| 268 |  | 
| 269 | 
             
                        from transformers import HubertModel
         | 
| 270 | 
            -
                        hubert_model = HubertModel.from_pretrained(model_file)
         | 
|  | |
| 271 | 
             
                        hubert_model.eval()
         | 
| 272 | 
             
                        with torch.no_grad():
         | 
| 273 | 
             
                            hidden_states = hubert_model(input_values, output_hidden_states=True).hidden_states # tuple of (B, T, D)
         | 
|  | |
| 12 | 
             
            from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
         | 
| 13 | 
             
            from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
         | 
| 14 | 
             
            from transformers import Wav2Vec2FeatureExtractor
         | 
| 15 | 
            +
            from transformers import AutoProcessor, AutoModel
         | 
| 16 |  | 
| 17 | 
             
            import dataclasses
         | 
| 18 | 
             
            from enum import auto, Enum
         | 
|  | |
| 264 | 
             
                        # model_file = "checkpoints/transformer/chinese-hubert-large"
         | 
| 265 | 
             
                        model_file = "ZebangCheng/chinese-hubert-large"
         | 
| 266 | 
             
                        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_file)
         | 
| 267 | 
            +
             | 
| 268 | 
             
                        input_values = feature_extractor(samples, sampling_rate=sr, return_tensors="pt").input_values
         | 
| 269 | 
             
                        # print("input_values:", input_values)
         | 
| 270 |  | 
| 271 | 
             
                        from transformers import HubertModel
         | 
| 272 | 
            +
                        # hubert_model = HubertModel.from_pretrained(model_file)
         | 
| 273 | 
            +
                        hubert_model = AutoModel.from_pretrained("ZebangCheng/chinese-hubert-large")
         | 
| 274 | 
             
                        hubert_model.eval()
         | 
| 275 | 
             
                        with torch.no_grad():
         | 
| 276 | 
             
                            hidden_states = hubert_model(input_values, output_hidden_states=True).hidden_states # tuple of (B, T, D)
         | 
    	
        minigpt4/models/base_model.py
    CHANGED
    
    | @@ -13,7 +13,9 @@ from omegaconf import OmegaConf | |
| 13 | 
             
            import numpy as np
         | 
| 14 | 
             
            import torch
         | 
| 15 | 
             
            import torch.nn as nn
         | 
| 16 | 
            -
            from transformers import LlamaTokenizer
         | 
|  | |
|  | |
| 17 | 
             
            from peft import (
         | 
| 18 | 
             
                LoraConfig,
         | 
| 19 | 
             
                get_peft_model,
         | 
| @@ -23,7 +25,8 @@ from peft import ( | |
| 23 | 
             
            from minigpt4.common.dist_utils import download_cached_file
         | 
| 24 | 
             
            from minigpt4.common.utils import get_abs_path, is_url
         | 
| 25 | 
             
            from minigpt4.models.eva_vit import create_eva_vit_g
         | 
| 26 | 
            -
            from minigpt4.models.modeling_llama import LlamaForCausalLM
         | 
|  | |
| 27 |  | 
| 28 |  | 
| 29 |  | 
| @@ -172,7 +175,9 @@ class BaseModel(nn.Module): | |
| 172 | 
             
                def init_llm(cls, llama_model_path, low_resource=False, low_res_device=0, lora_r=0,
         | 
| 173 | 
             
                             lora_target_modules=["q_proj","k_proj"], **lora_kargs):
         | 
| 174 | 
             
                    logging.info('Loading LLAMA')
         | 
| 175 | 
            -
                     | 
|  | |
|  | |
| 176 | 
             
                    llama_tokenizer.pad_token = "$$"
         | 
| 177 |  | 
| 178 | 
             
                    if low_resource:
         | 
|  | |
| 13 | 
             
            import numpy as np
         | 
| 14 | 
             
            import torch
         | 
| 15 | 
             
            import torch.nn as nn
         | 
| 16 | 
            +
            # from transformers import LlamaTokenizer
         | 
| 17 | 
            +
            from transformers import AutoTokenizer
         | 
| 18 | 
            +
             | 
| 19 | 
             
            from peft import (
         | 
| 20 | 
             
                LoraConfig,
         | 
| 21 | 
             
                get_peft_model,
         | 
|  | |
| 25 | 
             
            from minigpt4.common.dist_utils import download_cached_file
         | 
| 26 | 
             
            from minigpt4.common.utils import get_abs_path, is_url
         | 
| 27 | 
             
            from minigpt4.models.eva_vit import create_eva_vit_g
         | 
| 28 | 
            +
            # from minigpt4.models.modeling_llama import LlamaForCausalLM
         | 
| 29 | 
            +
            from transformers.models.llama.modeling_llama import LlamaForCausalLM
         | 
| 30 |  | 
| 31 |  | 
| 32 |  | 
|  | |
| 175 | 
             
                def init_llm(cls, llama_model_path, low_resource=False, low_res_device=0, lora_r=0,
         | 
| 176 | 
             
                             lora_target_modules=["q_proj","k_proj"], **lora_kargs):
         | 
| 177 | 
             
                    logging.info('Loading LLAMA')
         | 
| 178 | 
            +
                    llama_model_path
         | 
| 179 | 
            +
                    # llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
         | 
| 180 | 
            +
                    llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_path)
         | 
| 181 | 
             
                    llama_tokenizer.pad_token = "$$"
         | 
| 182 |  | 
| 183 | 
             
                    if low_resource:
         |