Update app.py
Browse files
app.py
CHANGED
|
@@ -15,8 +15,8 @@ import queue
|
|
| 15 |
import threading
|
| 16 |
|
| 17 |
# Initialize components
|
| 18 |
-
objection_handler = ObjectionHandler("objections.csv")
|
| 19 |
-
product_recommender = ProductRecommender("recommendations.csv")
|
| 20 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 21 |
|
| 22 |
# Queue to hold transcribed text
|
|
@@ -41,7 +41,7 @@ def calculate_overall_sentiment(sentiment_scores):
|
|
| 41 |
def handle_objection(text):
|
| 42 |
query_embedding = model.encode([text])
|
| 43 |
distances, indices = objection_handler.index.search(query_embedding, 1)
|
| 44 |
-
if distances[0][0] < 1.5:
|
| 45 |
responses = objection_handler.handle_objection(text)
|
| 46 |
return "\n".join(responses) if responses else "No objection response found."
|
| 47 |
return "No objection response found."
|
|
@@ -55,23 +55,20 @@ class AudioProcessor(AudioProcessorBase):
|
|
| 55 |
audio_data = frame.to_ndarray()
|
| 56 |
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes() # Convert to int16 format
|
| 57 |
|
| 58 |
-
# Debugging: Check audio data
|
| 59 |
print(f"Audio data shape: {audio_data.shape}")
|
| 60 |
print(f"Audio data sample: {audio_data[:10]}")
|
| 61 |
|
| 62 |
-
# Transcribe the audio
|
| 63 |
text = self.transcribe_audio(audio_bytes)
|
| 64 |
if text:
|
| 65 |
-
self.q.put(text)
|
| 66 |
|
| 67 |
return frame
|
| 68 |
|
| 69 |
def transcribe_audio(self, audio_bytes):
|
| 70 |
try:
|
| 71 |
-
|
| 72 |
-
chunks = transcribe_with_chunks({}) # Pass an empty objections_dict for now
|
| 73 |
if chunks:
|
| 74 |
-
return chunks[-1][0]
|
| 75 |
except Exception as e:
|
| 76 |
print(f"Error transcribing audio: {e}")
|
| 77 |
return None
|
|
@@ -79,7 +76,6 @@ class AudioProcessor(AudioProcessorBase):
|
|
| 79 |
def real_time_analysis():
|
| 80 |
st.info("Listening... Say 'stop' to end the process.")
|
| 81 |
|
| 82 |
-
# Start WebRTC audio stream
|
| 83 |
webrtc_ctx = webrtc_streamer(
|
| 84 |
key="real-time-audio",
|
| 85 |
mode=WebRtcMode.SENDONLY,
|
|
@@ -88,26 +84,22 @@ def real_time_analysis():
|
|
| 88 |
)
|
| 89 |
|
| 90 |
if webrtc_ctx.state.playing:
|
| 91 |
-
# Display transcribed text from the queue
|
| 92 |
while not transcription_queue.empty():
|
| 93 |
text = transcription_queue.get()
|
| 94 |
st.write(f"*Recognized Text:* {text}")
|
| 95 |
|
| 96 |
-
# Analyze sentiment
|
| 97 |
sentiment, score = analyze_sentiment(text)
|
| 98 |
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
| 99 |
|
| 100 |
-
# Handle objection
|
| 101 |
objection_response = handle_objection(text)
|
| 102 |
st.write(f"*Objection Response:* {objection_response}")
|
| 103 |
|
| 104 |
-
# Get product recommendation
|
| 105 |
recommendations = []
|
| 106 |
if is_valid_input(text) and is_relevant_sentiment(score):
|
| 107 |
query_embedding = model.encode([text])
|
| 108 |
distances, indices = product_recommender.index.search(query_embedding, 1)
|
| 109 |
|
| 110 |
-
if distances[0][0] < 1.5:
|
| 111 |
recommendations = product_recommender.get_recommendations(text)
|
| 112 |
|
| 113 |
if recommendations:
|
|
@@ -120,16 +112,13 @@ def fetch_data_and_display():
|
|
| 120 |
st.header("Call Summaries and Sentiment Analysis")
|
| 121 |
data = fetch_call_data(config["google_sheet_id"])
|
| 122 |
|
| 123 |
-
|
| 124 |
-
print(f"Fetched data: {data}")
|
| 125 |
|
| 126 |
if data.empty:
|
| 127 |
st.warning("No data available in the Google Sheet.")
|
| 128 |
else:
|
| 129 |
-
# Sentiment Visualizations
|
| 130 |
sentiment_counts = data['Sentiment'].value_counts()
|
| 131 |
|
| 132 |
-
# Pie Chart
|
| 133 |
col1, col2 = st.columns(2)
|
| 134 |
with col1:
|
| 135 |
st.subheader("Sentiment Distribution")
|
|
@@ -145,7 +134,6 @@ def fetch_data_and_display():
|
|
| 145 |
)
|
| 146 |
st.plotly_chart(fig_pie)
|
| 147 |
|
| 148 |
-
# Bar Chart
|
| 149 |
with col2:
|
| 150 |
st.subheader("Sentiment Counts")
|
| 151 |
fig_bar = px.bar(
|
|
@@ -162,37 +150,32 @@ def fetch_data_and_display():
|
|
| 162 |
)
|
| 163 |
st.plotly_chart(fig_bar)
|
| 164 |
|
| 165 |
-
# Existing Call Details Section
|
| 166 |
st.subheader("All Calls")
|
| 167 |
display_data = data.copy()
|
| 168 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
| 169 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
| 170 |
|
| 171 |
-
# Dropdown to select Call ID
|
| 172 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
| 173 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
| 174 |
|
| 175 |
-
# Display selected Call ID details
|
| 176 |
call_details = data[data['Call ID'] == call_id]
|
| 177 |
if not call_details.empty:
|
| 178 |
st.subheader("Detailed Call Information")
|
| 179 |
st.write(f"**Call ID:** {call_id}")
|
| 180 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
| 181 |
|
| 182 |
-
# Expand summary section
|
| 183 |
st.subheader("Full Call Summary")
|
| 184 |
st.text_area("Summary:",
|
| 185 |
value=call_details.iloc[0]['Summary'],
|
| 186 |
height=200,
|
| 187 |
disabled=True)
|
| 188 |
|
| 189 |
-
# Show all chunks for the selected call
|
| 190 |
st.subheader("Conversation Chunks")
|
| 191 |
for _, row in call_details.iterrows():
|
| 192 |
if pd.notna(row['Chunk']):
|
| 193 |
st.write(f"**Chunk:** {row['Chunk']}")
|
| 194 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
| 195 |
-
st.write("---")
|
| 196 |
else:
|
| 197 |
st.error("No details available for the selected Call ID.")
|
| 198 |
except Exception as e:
|
|
|
|
| 15 |
import threading
|
| 16 |
|
| 17 |
# Initialize components
|
| 18 |
+
objection_handler = ObjectionHandler("objections.csv")
|
| 19 |
+
product_recommender = ProductRecommender("recommendations.csv")
|
| 20 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 21 |
|
| 22 |
# Queue to hold transcribed text
|
|
|
|
| 41 |
def handle_objection(text):
|
| 42 |
query_embedding = model.encode([text])
|
| 43 |
distances, indices = objection_handler.index.search(query_embedding, 1)
|
| 44 |
+
if distances[0][0] < 1.5:
|
| 45 |
responses = objection_handler.handle_objection(text)
|
| 46 |
return "\n".join(responses) if responses else "No objection response found."
|
| 47 |
return "No objection response found."
|
|
|
|
| 55 |
audio_data = frame.to_ndarray()
|
| 56 |
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes() # Convert to int16 format
|
| 57 |
|
|
|
|
| 58 |
print(f"Audio data shape: {audio_data.shape}")
|
| 59 |
print(f"Audio data sample: {audio_data[:10]}")
|
| 60 |
|
|
|
|
| 61 |
text = self.transcribe_audio(audio_bytes)
|
| 62 |
if text:
|
| 63 |
+
self.q.put(text)
|
| 64 |
|
| 65 |
return frame
|
| 66 |
|
| 67 |
def transcribe_audio(self, audio_bytes):
|
| 68 |
try:
|
| 69 |
+
chunks = transcribe_with_chunks({})
|
|
|
|
| 70 |
if chunks:
|
| 71 |
+
return chunks[-1][0]
|
| 72 |
except Exception as e:
|
| 73 |
print(f"Error transcribing audio: {e}")
|
| 74 |
return None
|
|
|
|
| 76 |
def real_time_analysis():
|
| 77 |
st.info("Listening... Say 'stop' to end the process.")
|
| 78 |
|
|
|
|
| 79 |
webrtc_ctx = webrtc_streamer(
|
| 80 |
key="real-time-audio",
|
| 81 |
mode=WebRtcMode.SENDONLY,
|
|
|
|
| 84 |
)
|
| 85 |
|
| 86 |
if webrtc_ctx.state.playing:
|
|
|
|
| 87 |
while not transcription_queue.empty():
|
| 88 |
text = transcription_queue.get()
|
| 89 |
st.write(f"*Recognized Text:* {text}")
|
| 90 |
|
|
|
|
| 91 |
sentiment, score = analyze_sentiment(text)
|
| 92 |
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
| 93 |
|
|
|
|
| 94 |
objection_response = handle_objection(text)
|
| 95 |
st.write(f"*Objection Response:* {objection_response}")
|
| 96 |
|
|
|
|
| 97 |
recommendations = []
|
| 98 |
if is_valid_input(text) and is_relevant_sentiment(score):
|
| 99 |
query_embedding = model.encode([text])
|
| 100 |
distances, indices = product_recommender.index.search(query_embedding, 1)
|
| 101 |
|
| 102 |
+
if distances[0][0] < 1.5:
|
| 103 |
recommendations = product_recommender.get_recommendations(text)
|
| 104 |
|
| 105 |
if recommendations:
|
|
|
|
| 112 |
st.header("Call Summaries and Sentiment Analysis")
|
| 113 |
data = fetch_call_data(config["google_sheet_id"])
|
| 114 |
|
| 115 |
+
print(f"Fetched data: {data}") # Log fetched data
|
|
|
|
| 116 |
|
| 117 |
if data.empty:
|
| 118 |
st.warning("No data available in the Google Sheet.")
|
| 119 |
else:
|
|
|
|
| 120 |
sentiment_counts = data['Sentiment'].value_counts()
|
| 121 |
|
|
|
|
| 122 |
col1, col2 = st.columns(2)
|
| 123 |
with col1:
|
| 124 |
st.subheader("Sentiment Distribution")
|
|
|
|
| 134 |
)
|
| 135 |
st.plotly_chart(fig_pie)
|
| 136 |
|
|
|
|
| 137 |
with col2:
|
| 138 |
st.subheader("Sentiment Counts")
|
| 139 |
fig_bar = px.bar(
|
|
|
|
| 150 |
)
|
| 151 |
st.plotly_chart(fig_bar)
|
| 152 |
|
|
|
|
| 153 |
st.subheader("All Calls")
|
| 154 |
display_data = data.copy()
|
| 155 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
| 156 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
| 157 |
|
|
|
|
| 158 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
| 159 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
| 160 |
|
|
|
|
| 161 |
call_details = data[data['Call ID'] == call_id]
|
| 162 |
if not call_details.empty:
|
| 163 |
st.subheader("Detailed Call Information")
|
| 164 |
st.write(f"**Call ID:** {call_id}")
|
| 165 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
| 166 |
|
|
|
|
| 167 |
st.subheader("Full Call Summary")
|
| 168 |
st.text_area("Summary:",
|
| 169 |
value=call_details.iloc[0]['Summary'],
|
| 170 |
height=200,
|
| 171 |
disabled=True)
|
| 172 |
|
|
|
|
| 173 |
st.subheader("Conversation Chunks")
|
| 174 |
for _, row in call_details.iterrows():
|
| 175 |
if pd.notna(row['Chunk']):
|
| 176 |
st.write(f"**Chunk:** {row['Chunk']}")
|
| 177 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
| 178 |
+
st.write("---")
|
| 179 |
else:
|
| 180 |
st.error("No details available for the selected Call ID.")
|
| 181 |
except Exception as e:
|