import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # Select the best distill model for Hugging Face Spaces model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Load model with quantization for optimized performance quantization_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=quantization_config, device_map="auto", trust_remote_code=True ) # Define the text generation function def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate(**inputs, max_length=150) return tokenizer.decode(output[0], skip_special_tokens=True) # Set up Gradio UI interface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter your prompt"), outputs=gr.Textbox(label="AI Response"), title="DeepSeek-R1 Distilled LLaMA Chatbot", description="Enter a prompt and receive a response from DeepSeek-R1-Distill-Llama-8B." ) # Launch the app interface.launch()