File size: 1,133 Bytes
1e20656
 
5c5b397
 
 
 
8181851
91c6517
5c5b397
4920d02
 
 
12cd932
8181851
7d9a734
 
12cd932
8181851
12cd932
 
5ad04f6
27bf8b4
136fd80
5e90216
 
 
 
 
 
 
 
a61a907
 
0707d46
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#Bismillahir Rahmaanir Raheem
#Almadadh Ya Gause RadiAllahu Ta'alah Anh - Ameen


import gradio as gr

def predict_amputation(age, gender, race, diabetes_type):
    return "ALLAH"



title = "DIabetes-related Amputation Risk Calculator (DIARC)"

description = "A diabetes-related amputation machine learning model trained on the diabetes dataset from the Inkosi Albert Luthuli Central Hospital (IALCH) in Durban, KwaZulu-Natal, South Africa."


iface = gr.Interface(
		fn=predict_amputation, 
		title=title, 
		description=description, 
		inputs=[gr.inputs.Slider(minimum=0,maximum=100, step=1, label="Age"), gr.inputs.Dropdown(["Female", "Male"], default="Male", label="Gender"), gr.inputs.Dropdown(["Asian", "Black", "Coloured", "White", "Other"], default="Asian", label="Race"), gr.inputs.Dropdown(["1", "2"], default="1", label="Diabetes Type")], 
		outputs="text",
		#theme="darkdefault",
		examples=[
			[50, "Male", "Black", 2],
			[76, "Female", "Asian", 2],
			[12, "Female", "White", 1],
			[30, "Male", "Coloured", 1],
			[65, "Female", "Other", 2],
		],
)

iface.test_launch()		
if __name__ == "__main__":
	iface.launch()