File size: 1,133 Bytes
1e20656 5c5b397 8181851 91c6517 5c5b397 4920d02 12cd932 8181851 7d9a734 12cd932 8181851 12cd932 5ad04f6 27bf8b4 136fd80 5e90216 a61a907 0707d46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
#Bismillahir Rahmaanir Raheem
#Almadadh Ya Gause RadiAllahu Ta'alah Anh - Ameen
import gradio as gr
def predict_amputation(age, gender, race, diabetes_type):
return "ALLAH"
title = "DIabetes-related Amputation Risk Calculator (DIARC)"
description = "A diabetes-related amputation machine learning model trained on the diabetes dataset from the Inkosi Albert Luthuli Central Hospital (IALCH) in Durban, KwaZulu-Natal, South Africa."
iface = gr.Interface(
fn=predict_amputation,
title=title,
description=description,
inputs=[gr.inputs.Slider(minimum=0,maximum=100, step=1, label="Age"), gr.inputs.Dropdown(["Female", "Male"], default="Male", label="Gender"), gr.inputs.Dropdown(["Asian", "Black", "Coloured", "White", "Other"], default="Asian", label="Race"), gr.inputs.Dropdown(["1", "2"], default="1", label="Diabetes Type")],
outputs="text",
#theme="darkdefault",
examples=[
[50, "Male", "Black", 2],
[76, "Female", "Asian", 2],
[12, "Female", "White", 1],
[30, "Male", "Coloured", 1],
[65, "Female", "Other", 2],
],
)
iface.test_launch()
if __name__ == "__main__":
iface.launch() |