File size: 6,477 Bytes
c132e32
d809aeb
c132e32
 
d809aeb
 
 
c132e32
 
23dce1e
c132e32
d809aeb
 
c132e32
 
23dce1e
c132e32
7a0af64
 
c132e32
 
23dce1e
d809aeb
c132e32
 
d809aeb
 
 
c132e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d809aeb
c132e32
 
 
d809aeb
c132e32
 
 
 
 
 
 
 
 
 
d809aeb
c132e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d809aeb
c132e32
 
 
 
 
 
d809aeb
c132e32
 
 
 
 
 
 
d809aeb
c132e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23dce1e
 
7a0af64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c132e32
 
7a0af64
c132e32
 
 
 
 
 
 
 
 
23dce1e
d809aeb
c132e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import sys
import matplotlib
import matplotlib.pyplot as plt
from pathlib import Path
import torch
from torch import nn
import numpy as np
import PIL
<<<<<<< HEAD

sys.path.insert(0, "../resources")
from resources.module import GradioModule, register


=======

sys.path.insert(0, "../resources")
from resources.module import GradioModule, register

"""
>>>>>>> origin/main
@GradioModule
class Pictionary:

    def __init__(self, txt, model) -> None:
        self.LABELS = Path(txt).read_text().splitlines()
        print(txt, model)
        self.model = nn.Sequential(
                nn.Conv2d(1, 32, 3, padding='same'),
                nn.ReLU(),
                nn.MaxPool2d(2),
                nn.Conv2d(32, 64, 3, padding='same'),
                nn.ReLU(),
                nn.MaxPool2d(2),
                nn.Conv2d(64, 128, 3, padding='same'),
                nn.ReLU(),
                nn.MaxPool2d(2),
                nn.Flatten(),
                nn.Linear(1152, 256),
                nn.ReLU(),
                nn.Linear(256, len(self.LABELS)),
                )   
        state_dict = torch.load(model,    map_location='cpu')
        self.model.load_state_dict(state_dict, strict=False)
        self.model.eval()

    @register(inputs="sketchpad", outputs=gr.Label(), examples=None, live=True)
    def perdict(self, img) -> 'dict[str, float]':
        if type(img) == type(None): return {}
        x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
        with torch.no_grad():
            out = self.model(x)
        probabilities = torch.nn.functional.softmax(out[0], dim=0)
        values, indices = torch.topk(probabilities, 5)
        confidences = {self.LABELS[i]: v.item() for i, v in zip(indices, values)}
        return confidences

@GradioModule
class HelloWorld_2_0:

    @register(inputs=["text", "text", gr.Radio(["morning", "evening", "night"])], outputs="text")
    def Hello(self, Lname : str, Fname : str, day : 'list[any]'=["morning", "evening", "night"]) -> str:
        return "Hello, {} {}".format(Fname, Lname)  

    @register(inputs=["text", "text"], outputs="text")
    def goodbye(self, Fname : str, Lname : str) -> str:
        return "Goodbye, {} {}".format(Fname, Lname)  
    
    @register(inputs=["text", gr.Checkbox() , gr.Slider(0, 60)], outputs=["text", "number"])
    def greet(self, name, is_morning, temperature):
        salutation = "Good morning" if is_morning else "Good evening"
        greeting = "%s %s. It is %s degrees today" % (salutation, name, temperature)
        celsius = (temperature - 32) * 5 / 9
        return (greeting, round(celsius, 2))



@GradioModule
class FSD:

    def get_new_val(self, old_val, nc):
        return np.round(old_val * (nc - 1)) / (nc - 1)


    def palette_reduce(self, img : PIL.Image.Image, nc):
        pixels = np.array(img, dtype=float) / 255
        pixels = self.get_new_val(pixels, nc)

        carr = np.array(pixels / np.max(pixels) * 255, dtype=np.uint8)
        return PIL.Image.fromarray(carr)

    @register(inputs=[gr.Image(), gr.Slider(0.00, 16)], outputs=gr.Gallery())
    def Floyd_Steinberg_dithering(self, img, nc  ):
        pixels = np.array(img, dtype=float) / 255
        new_height, new_width, _ = img.shape 
        for row in range(new_height):
            for col in range(new_width):
                old_val = pixels[row, col].copy()
                new_val = self.get_new_val(old_val, nc)
                pixels[row, col] = new_val
                err = old_val - new_val
                if col < new_width - 1:
                    pixels[row, col + 1] += err * 7 / 16
                if row < new_height - 1:
                    if col > 0:
                        pixels[row + 1, col - 1] += err * 3 / 16
                    pixels[row + 1, col] += err * 5 / 16
                    if col < new_width - 1:
                        pixels[row + 1, col + 1] += err * 1 / 16
        carr = np.array(pixels / np.max(pixels, axis=(0, 1)) * 255, dtype=np.uint8)
        return [PIL.Image.fromarray(carr), self.palette_reduce(img, nc) ]

<<<<<<< HEAD
=======
    @register(inputs=[gr.Image(), gr.Image(), gr.Slider(0.00, 16)], outputs=gr.Gallery())
    def examples(self, img, img2, nc, ) -> 'list[PIL.Image.Image]':
        pixels = np.array(img, dtype=float) / 255
        new_height, new_width, _ = img.shape 
        for row in range(new_height):
            for col in range(new_width):
                old_val = pixels[row, col].copy()
                new_val = self.get_new_val(old_val, nc)
                pixels[row, col] = new_val
                err = old_val - new_val
                if col < new_width - 1:
                    pixels[row, col + 1] += err * 7 / 16
                if row < new_height - 1:
                    if col > 0:
                        pixels[row + 1, col - 1] += err * 3 / 16
                    pixels[row + 1, col] += err * 5 / 16
                    if col < new_width - 1:
                        pixels[row + 1, col + 1] += err * 1 / 16
        carr = np.array(pixels / np.max(pixels, axis=(0, 1)) * 255, dtype=np.uint8)
        return [PIL.Image.fromarray(carr), self.palette_reduce(img, nc) ]


@GradioModule
class C:

    def Hello(self):
        return "Hello"
    
    @register(inputs="text", outputs="text")
    def Greeting(self, name):
        return self.Hello() + " " + name

>>>>>>> origin/main
@GradioModule
class stock_forecast:
    
    def __init__(self):
        matplotlib.use('Agg')

    @register(inputs=[gr.Checkbox(label="legend"), gr.Radio([2025, 2030, 2035, 2040], label="projct"), gr.CheckboxGroup(["Google", "Microsoft", "Gradio"], label="company"), gr.Slider(label="noise"), gr.Radio(["cross", "line", "circle"], label="style")], outputs=[gr.Plot()])
    def plot_forcast(self, legend, project, companies , noise , styles)-> matplotlib.figure.Figure:
        start_year = 2022
        x = np.arange(start_year, project + 1)
        year_count = x.shape[0]
        plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[styles]
        fig = plt.figure()
        ax = fig.add_subplot(111)
        for i, company in enumerate(companies):
            series = np.arange(0, year_count, dtype=float)
            series = series**2 * (i + 1)
            series += np.random.rand(year_count) * noise
            ax.plot(x, series, plt_format)
        if legend:
            plt.legend(companies)
        print(type(fig))
        return fig