File size: 5,259 Bytes
c132e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import PIL
from helper.compiler import GradioCompiler, register



"""
@gradio_compile
class Pictionary:

    def __init__(self) -> None:
        self.LABELS = Path('./src/examples/data/labels.txt').read_text().splitlines()
    
        self.model = nn.Sequential(
                nn.Conv2d(1, 32, 3, padding='same'),
                nn.ReLU(),
                nn.MaxPool2d(2),
                nn.Conv2d(32, 64, 3, padding='same'),
                nn.ReLU(),
                nn.MaxPool2d(2),
                nn.Conv2d(64, 128, 3, padding='same'),
                nn.ReLU(),
                nn.MaxPool2d(2),
                nn.Flatten(),
                nn.Linear(1152, 256),
                nn.ReLU(),
                nn.Linear(256, len(self.LABELS)),
                )   
        state_dict = torch.load('./src/examples/data/pytorch_model.bin',    map_location='cpu')
        self.model.load_state_dict(state_dict, strict=False)
        self.model.eval()

    @register(inputs="sketchpad", outputs=gr.Label())
    def perdict(self, img) -> 'dict[str, float]':
        if type(img) == type(None): return {}
        x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
        with torch.no_grad():
            out = self.model(x)
        probabilities = torch.nn.functional.softmax(out[0], dim=0)
        values, indices = torch.topk(probabilities, 5)
        confidences = {self.LABELS[i]: v.item() for i, v in zip(indices, values)}
        return confidences
"""

@GradioCompiler
class HelloWorld_2_0:

    @register(inputs=["text", "text", gr.Radio(["morning", "evening", "night"])], outputs="text")
    def Hello(self, Lname : str, Fname : str, day : 'list[any]'=["morning", "evening", "night"]) -> str:
        return "Hello, {} {}".format(Fname, Lname)  

    @register(inputs=["text", "text"], outputs="text")
    def goodbye(self, Fname : str, Lname : str) -> str:
        return "Goodbye, {} {}".format(Fname, Lname)  
    
    @register(inputs=["text", gr.Checkbox() , gr.Slider(0, 60)], outputs=["text", "number"])
    def greet(self, name, is_morning, temperature):
        salutation = "Good morning" if is_morning else "Good evening"
        greeting = "%s %s. It is %s degrees today" % (salutation, name, temperature)
        celsius = (temperature - 32) * 5 / 9
        return (greeting, round(celsius, 2))



@GradioCompiler
class FSD:

    def get_new_val(self, old_val, nc):
        return np.round(old_val * (nc - 1)) / (nc - 1)


    def palette_reduce(self, img : PIL.Image.Image, nc : 'tuple[float, float, float]'=(0.0000, 0, 16)):
        pixels = np.array(img, dtype=float) / 255
        pixels = self.get_new_val(pixels, nc)

        carr = np.array(pixels / np.max(pixels) * 255, dtype=np.uint8)
        return PIL.Image.fromarray(carr)

    @register(inputs=[gr.Image(), gr.Slider(0.00, 16)], outputs=gr.Gallery())
    def Floyd_Steinberg_dithering(self, img, nc : 'tuple[float, float, float]'=(0.0000, 0, 16) ) -> 'list[PIL.Image.Image]':
        pixels = np.array(img, dtype=float) / 255
        new_height, new_width, _ = img.shape 
        for row in range(new_height):
            for col in range(new_width):
                old_val = pixels[row, col].copy()
                new_val = self.get_new_val(old_val, nc)
                pixels[row, col] = new_val
                err = old_val - new_val
                if col < new_width - 1:
                    pixels[row, col + 1] += err * 7 / 16
                if row < new_height - 1:
                    if col > 0:
                        pixels[row + 1, col - 1] += err * 3 / 16
                    pixels[row + 1, col] += err * 5 / 16
                    if col < new_width - 1:
                        pixels[row + 1, col + 1] += err * 1 / 16
        carr = np.array(pixels / np.max(pixels, axis=(0, 1)) * 255, dtype=np.uint8)
        return [PIL.Image.fromarray(carr), self.palette_reduce(img, nc) ]



@GradioCompiler
class C:

    def Hello(self):
        return "Hello"
    
    @register(inputs="text", outputs="text")
    def Greeting(self, name):
        return self.Hello() + " " + name

@GradioCompiler
class stock_forecast:
    
    def __init__(self):
        matplotlib.use('Agg')

    @register(inputs=[gr.Checkbox(label="legend"), gr.Radio([2025, 2030, 2035, 2040], label="projct"), gr.CheckboxGroup(["Google", "Microsoft", "Gradio"], label="company"), gr.Slider(label="noise"), gr.Radio(["cross", "line", "circle"], label="style")], outputs=[gr.Plot()])
    def plot_forcast(self, legend, project, companies , noise , styles)-> matplotlib.figure.Figure:
        start_year = 2022
        x = np.arange(start_year, project + 1)
        year_count = x.shape[0]
        plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[styles]
        fig = plt.figure()
        ax = fig.add_subplot(111)
        for i, company in enumerate(companies):
            series = np.arange(0, year_count, dtype=float)
            series = series**2 * (i + 1)
            series += np.random.rand(year_count) * noise
            ax.plot(x, series, plt_format)
        if legend:
            plt.legend(companies)
        print(type(fig))
        return fig