import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import ( AssistantPromptMessage, PromptMessageTool, SystemPromptMessage, UserPromptMessage, ) from core.model_runtime.entities.model_entities import AIModelEntity from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock def test_predefined_models(): model = ChatGLMLargeLanguageModel() model_schemas = model.predefined_models() assert len(model_schemas) >= 1 assert isinstance(model_schemas[0], AIModelEntity) @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_validate_credentials_for_chat_model(setup_openai_mock): model = ChatGLMLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"}) model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}) @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_invoke_model(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={ "temperature": 0.7, "top_p": 1.0, }, stop=["you"], user="abc-123", stream=False, ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 assert response.usage.total_tokens > 0 @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_invoke_stream_model(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={ "temperature": 0.7, "top_p": 1.0, }, stop=["you"], stream=True, user="abc-123", ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_invoke_stream_model_with_functions(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model="chatglm3-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, prompt_messages=[ SystemPromptMessage( content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。" ), UserPromptMessage(content="波士顿天气如何?"), ], model_parameters={ "temperature": 0, "top_p": 1.0, }, stop=["you"], user="abc-123", stream=True, tools=[ PromptMessageTool( name="get_current_weather", description="Get the current weather in a given location", parameters={ "type": "object", "properties": { "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, ) ], ) assert isinstance(response, Generator) call: LLMResultChunk = None chunks = [] for chunk in response: chunks.append(chunk) assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0: call = chunk break assert call is not None assert call.delta.message.tool_calls[0].function.name == "get_current_weather" @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_invoke_model_with_functions(setup_openai_mock): model = ChatGLMLargeLanguageModel() response = model.invoke( model="chatglm3-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")], model_parameters={ "temperature": 0.7, "top_p": 1.0, }, stop=["you"], user="abc-123", stream=False, tools=[ PromptMessageTool( name="get_current_weather", description="Get the current weather in a given location", parameters={ "type": "object", "properties": { "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["c", "f"]}, }, "required": ["location"], }, ) ], ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 assert response.usage.total_tokens > 0 assert response.message.tool_calls[0].function.name == "get_current_weather" def test_get_num_tokens(): model = ChatGLMLargeLanguageModel() num_tokens = model.get_num_tokens( model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], tools=[ PromptMessageTool( name="get_current_weather", description="Get the current weather in a given location", parameters={ "type": "object", "properties": { "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["c", "f"]}, }, "required": ["location"], }, ) ], ) assert isinstance(num_tokens, int) assert num_tokens == 77 num_tokens = model.get_num_tokens( model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], ) assert isinstance(num_tokens, int) assert num_tokens == 21