import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import ( AssistantPromptMessage, PromptMessageTool, SystemPromptMessage, UserPromptMessage, ) from core.model_runtime.entities.model_entities import AIModelEntity from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.x.llm.llm import XAILargeLanguageModel """FOR MOCK FIXTURES, DO NOT REMOVE""" from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock def test_predefined_models(): model = XAILargeLanguageModel() model_schemas = model.predefined_models() assert len(model_schemas) >= 1 assert isinstance(model_schemas[0], AIModelEntity) @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_validate_credentials_for_chat_model(setup_openai_mock): model = XAILargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): # model name to gpt-3.5-turbo because of mocking model.validate_credentials( model="gpt-3.5-turbo", credentials={"api_key": "invalid_key", "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat"}, ) model.validate_credentials( model="grok-beta", credentials={ "api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat", }, ) @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_invoke_chat_model(setup_openai_mock): model = XAILargeLanguageModel() result = model.invoke( model="grok-beta", credentials={ "api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat", }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={ "temperature": 0.0, "top_p": 1.0, "presence_penalty": 0.0, "frequency_penalty": 0.0, "max_tokens": 10, }, stop=["How"], stream=False, user="foo", ) assert isinstance(result, LLMResult) assert len(result.message.content) > 0 @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_invoke_chat_model_with_tools(setup_openai_mock): model = XAILargeLanguageModel() result = model.invoke( model="grok-beta", credentials={ "api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat", }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage( content="what's the weather today in London?", ), ], model_parameters={"temperature": 0.0, "max_tokens": 100}, tools=[ PromptMessageTool( name="get_weather", description="Determine weather in my location", parameters={ "type": "object", "properties": { "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["c", "f"]}, }, "required": ["location"], }, ), PromptMessageTool( name="get_stock_price", description="Get the current stock price", parameters={ "type": "object", "properties": {"symbol": {"type": "string", "description": "The stock symbol"}}, "required": ["symbol"], }, ), ], stream=False, user="foo", ) assert isinstance(result, LLMResult) assert isinstance(result.message, AssistantPromptMessage) @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True) def test_invoke_stream_chat_model(setup_openai_mock): model = XAILargeLanguageModel() result = model.invoke( model="grok-beta", credentials={ "api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat", }, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], model_parameters={"temperature": 0.0, "max_tokens": 100}, stream=True, user="foo", ) assert isinstance(result, Generator) for chunk in result: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True if chunk.delta.finish_reason is not None: assert chunk.delta.usage is not None assert chunk.delta.usage.completion_tokens > 0 def test_get_num_tokens(): model = XAILargeLanguageModel() num_tokens = model.get_num_tokens( model="grok-beta", credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")}, prompt_messages=[UserPromptMessage(content="Hello World!")], ) assert num_tokens == 10 num_tokens = model.get_num_tokens( model="grok-beta", credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")}, prompt_messages=[ SystemPromptMessage( content="You are a helpful AI assistant.", ), UserPromptMessage(content="Hello World!"), ], tools=[ PromptMessageTool( name="get_weather", description="Determine weather in my location", parameters={ "type": "object", "properties": { "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, "unit": {"type": "string", "enum": ["c", "f"]}, }, "required": ["location"], }, ), ], ) assert num_tokens == 77