File size: 4,171 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from collections.abc import Generator

import pytest

from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (
    AssistantPromptMessage,
    PromptMessageTool,
    SystemPromptMessage,
    UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.stepfun.llm.llm import StepfunLargeLanguageModel


def test_validate_credentials():
    model = StepfunLargeLanguageModel()

    with pytest.raises(CredentialsValidateFailedError):
        model.validate_credentials(model="step-1-8k", credentials={"api_key": "invalid_key"})

    model.validate_credentials(model="step-1-8k", credentials={"api_key": os.environ.get("STEPFUN_API_KEY")})


def test_invoke_model():
    model = StepfunLargeLanguageModel()

    response = model.invoke(
        model="step-1-8k",
        credentials={"api_key": os.environ.get("STEPFUN_API_KEY")},
        prompt_messages=[UserPromptMessage(content="Hello World!")],
        model_parameters={"temperature": 0.9, "top_p": 0.7},
        stop=["Hi"],
        stream=False,
        user="abc-123",
    )

    assert isinstance(response, LLMResult)
    assert len(response.message.content) > 0


def test_invoke_stream_model():
    model = StepfunLargeLanguageModel()

    response = model.invoke(
        model="step-1-8k",
        credentials={"api_key": os.environ.get("STEPFUN_API_KEY")},
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(content="Hello World!"),
        ],
        model_parameters={"temperature": 0.9, "top_p": 0.7},
        stream=True,
        user="abc-123",
    )

    assert isinstance(response, Generator)

    for chunk in response:
        assert isinstance(chunk, LLMResultChunk)
        assert isinstance(chunk.delta, LLMResultChunkDelta)
        assert isinstance(chunk.delta.message, AssistantPromptMessage)
        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True


def test_get_customizable_model_schema():
    model = StepfunLargeLanguageModel()

    schema = model.get_customizable_model_schema(
        model="step-1-8k", credentials={"api_key": os.environ.get("STEPFUN_API_KEY")}
    )
    assert isinstance(schema, AIModelEntity)


def test_invoke_chat_model_with_tools():
    model = StepfunLargeLanguageModel()

    result = model.invoke(
        model="step-1-8k",
        credentials={"api_key": os.environ.get("STEPFUN_API_KEY")},
        prompt_messages=[
            SystemPromptMessage(
                content="You are a helpful AI assistant.",
            ),
            UserPromptMessage(
                content="what's the weather today in Shanghai?",
            ),
        ],
        model_parameters={"temperature": 0.9, "max_tokens": 100},
        tools=[
            PromptMessageTool(
                name="get_weather",
                description="Determine weather in my location",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
                        "unit": {"type": "string", "enum": ["c", "f"]},
                    },
                    "required": ["location"],
                },
            ),
            PromptMessageTool(
                name="get_stock_price",
                description="Get the current stock price",
                parameters={
                    "type": "object",
                    "properties": {"symbol": {"type": "string", "description": "The stock symbol"}},
                    "required": ["symbol"],
                },
            ),
        ],
        stream=False,
        user="abc-123",
    )

    assert isinstance(result, LLMResult)
    assert isinstance(result.message, AssistantPromptMessage)
    assert len(result.message.tool_calls) > 0