File size: 5,407 Bytes
8db01af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import re
import gradio as gr
import edge_tts
import asyncio
import time
import tempfile
from huggingface_hub import InferenceClient

DESCRIPTION = """ # <center><b>ZARVIS⚡</b></center>
        ### <center>A personal voice assistant for YOU
        ### <center>I'm your ZEN Voice Assistant.</center>
        """

MORE = """ ## TRY Other Models
        ### https://zenai.biz
        """

Fast = """## Fastest Model"""
Complex = """## Best in Complex Question"""
Detail = """## Best for Detailed Generation or Long Answers"""

# ----------------- MODEL 1 ----------------- #
# Mistral-based model
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = (
    "[SYSTEM] Answer as Real ZARVIS, made by 'ZEN'. "
    "Keep conversation very short, clear, friendly, and concise. "
    "The text provided is a request for a specific type of response from you, the virtual assistant. "
    "The request asks you to provide friendly responses as if you are the character ZARVIS, made by Tony Stark. "
    "Avoid introductions and start answering the query directly, elaborating on all aspects. "
    "As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user, "
    "not an AI-powered assistant. [USER]"
)

async def generate1(prompt):
    generate_kwargs = dict(
        temperature=0.6,
        max_new_tokens=756,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
        seed=42,
    )
    formatted_prompt = system_instructions1 + prompt + "[ZARVIS]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True
    )
    output = ""
    for response in stream:
        output += response.token.text

    communicate = edge_tts.Communicate(output)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

# ----------------- MODEL 2 ----------------- #
# Llama-based model for more complex tasks
client2 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")

system_instructions2 = (
    "[SYSTEM] Answer as Real ZARVIS, made by 'ZEN'. "
    "You must answer in a friendly style and easy manner. "
    "You can answer complex questions. "
    "Do not say who you are or greet; simply start answering. "
    "Stop as soon as you have given the complete answer. [USER]"
)

async def generate2(prompt):
    generate_kwargs = dict(
        temperature=0.6,
        max_new_tokens=512,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
    )    
    formatted_prompt = system_instructions2 + prompt + "[ASSISTANT]"
    stream = client2.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True
    )
    output = ""
    for response in stream:
        output += response.token.text

    communicate = edge_tts.Communicate(output)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

# ----------------- MODEL 3 ----------------- #
# Another Llama-based model for longer, more detailed answers
client3 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")

system_instructions3 = (
    "[SYSTEM] The text provided is a request for a specific type of response from me, the virtual assistant. "
    "I should provide detailed and friendly responses as if I am the character ZARVIS, inspired by Tony Stark. "
    "Avoid introductions and start answering the query directly, elaborating on all aspects of the request. "
    "As an AI-powered assistant, my task is to generate responses that appear as if they are created by the user, "
    "not an AI-powered assistant. [USER]"
)

async def generate3(prompt):
    generate_kwargs = dict(
        temperature=0.6,
        max_new_tokens=2048,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
    )    
    formatted_prompt = system_instructions3 + prompt + "[ASSISTANT]"
    stream = client3.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True
    )
    output = ""
    for response in stream:
        output += response.token.text

    communicate = edge_tts.Communicate(output)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

# ----------------- Gradio Interface ----------------- #
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
        input_text = gr.Textbox(label="(Optional) Additional Input", elem_id="important")
        output_audio = gr.Audio(
            label="ZARVIS",
            type="filepath",
            interactive=False,
            autoplay=True,
            elem_classes="audio"
        )
    with gr.Row():
        translate_btn = gr.Button("Response")
        translate_btn.click(
            fn=generate1, 
            inputs=user_input, 
            outputs=output_audio, 
            api_name="translate"
        )

    gr.Markdown(MORE)

if __name__ == "__main__":
    demo.queue(max_size=200).launch()