File size: 5,407 Bytes
8db01af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import re
import gradio as gr
import edge_tts
import asyncio
import time
import tempfile
from huggingface_hub import InferenceClient
DESCRIPTION = """ # <center><b>ZARVIS⚡</b></center>
### <center>A personal voice assistant for YOU
### <center>I'm your ZEN Voice Assistant.</center>
"""
MORE = """ ## TRY Other Models
### https://zenai.biz
"""
Fast = """## Fastest Model"""
Complex = """## Best in Complex Question"""
Detail = """## Best for Detailed Generation or Long Answers"""
# ----------------- MODEL 1 ----------------- #
# Mistral-based model
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = (
"[SYSTEM] Answer as Real ZARVIS, made by 'ZEN'. "
"Keep conversation very short, clear, friendly, and concise. "
"The text provided is a request for a specific type of response from you, the virtual assistant. "
"The request asks you to provide friendly responses as if you are the character ZARVIS, made by Tony Stark. "
"Avoid introductions and start answering the query directly, elaborating on all aspects. "
"As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user, "
"not an AI-powered assistant. [USER]"
)
async def generate1(prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=756,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions1 + prompt + "[ZARVIS]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True
)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
# ----------------- MODEL 2 ----------------- #
# Llama-based model for more complex tasks
client2 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
system_instructions2 = (
"[SYSTEM] Answer as Real ZARVIS, made by 'ZEN'. "
"You must answer in a friendly style and easy manner. "
"You can answer complex questions. "
"Do not say who you are or greet; simply start answering. "
"Stop as soon as you have given the complete answer. [USER]"
)
async def generate2(prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
)
formatted_prompt = system_instructions2 + prompt + "[ASSISTANT]"
stream = client2.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True
)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
# ----------------- MODEL 3 ----------------- #
# Another Llama-based model for longer, more detailed answers
client3 = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")
system_instructions3 = (
"[SYSTEM] The text provided is a request for a specific type of response from me, the virtual assistant. "
"I should provide detailed and friendly responses as if I am the character ZARVIS, inspired by Tony Stark. "
"Avoid introductions and start answering the query directly, elaborating on all aspects of the request. "
"As an AI-powered assistant, my task is to generate responses that appear as if they are created by the user, "
"not an AI-powered assistant. [USER]"
)
async def generate3(prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=2048,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
)
formatted_prompt = system_instructions3 + prompt + "[ASSISTANT]"
stream = client3.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True
)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
# ----------------- Gradio Interface ----------------- #
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
input_text = gr.Textbox(label="(Optional) Additional Input", elem_id="important")
output_audio = gr.Audio(
label="ZARVIS",
type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio"
)
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(
fn=generate1,
inputs=user_input,
outputs=output_audio,
api_name="translate"
)
gr.Markdown(MORE)
if __name__ == "__main__":
demo.queue(max_size=200).launch()
|