Spaces:
Runtime error
Runtime error
| import cv2 | |
| import mediapipe as mp | |
| import torch | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from rembg import remove | |
| from rembg.session_factory import new_session | |
| from PIL import Image | |
| from torchvision.models import detection | |
| from lib.pymafx.core import constants | |
| from lib.common.cloth_extraction import load_segmentation | |
| from torchvision import transforms | |
| def transform_to_tensor(res, mean=None, std=None, is_tensor=False): | |
| all_ops = [] | |
| if res is not None: | |
| all_ops.append(transforms.Resize(size=res)) | |
| if not is_tensor: | |
| all_ops.append(transforms.ToTensor()) | |
| if mean is not None and std is not None: | |
| all_ops.append(transforms.Normalize(mean=mean, std=std)) | |
| return transforms.Compose(all_ops) | |
| def aug_matrix(w1, h1, w2, h2): | |
| dx = (w2 - w1) / 2.0 | |
| dy = (h2 - h1) / 2.0 | |
| matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]]) | |
| scale = np.min([float(w2) / w1, float(h2) / h1]) | |
| M = get_affine_matrix(center=(w2 / 2.0, h2 / 2.0), translate=(0, 0), scale=scale) | |
| M = np.array(M + [0.0, 0.0, 1.0]).reshape(3, 3) | |
| M = M.dot(matrix_trans) | |
| return M | |
| def get_affine_matrix(center, translate, scale): | |
| cx, cy = center | |
| tx, ty = translate | |
| M = [1, 0, 0, 0, 1, 0] | |
| M = [x * scale for x in M] | |
| # Apply translation and of center translation: RSS * C^-1 | |
| M[2] += M[0] * (-cx) + M[1] * (-cy) | |
| M[5] += M[3] * (-cx) + M[4] * (-cy) | |
| # Apply center translation: T * C * RSS * C^-1 | |
| M[2] += cx + tx | |
| M[5] += cy + ty | |
| return M | |
| def load_img(img_file): | |
| img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) | |
| if len(img.shape) == 2: | |
| img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
| if not img_file.endswith("png"): | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| else: | |
| img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) | |
| return img | |
| def get_keypoints(image): | |
| def collect_xyv(x, body=True): | |
| lmk = x.landmark | |
| all_lmks = [] | |
| for i in range(len(lmk)): | |
| visibility = lmk[i].visibility if body else 1.0 | |
| all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility])) | |
| return torch.stack(all_lmks).view(-1, 4) | |
| mp_holistic = mp.solutions.holistic | |
| with mp_holistic.Holistic( | |
| static_image_mode=True, | |
| model_complexity=2, | |
| ) as holistic: | |
| results = holistic.process(image) | |
| fake_kps = torch.zeros(33, 4) | |
| result = {} | |
| result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps | |
| result["lhand"] = collect_xyv(results.left_hand_landmarks, False) if results.left_hand_landmarks else fake_kps | |
| result["rhand"] = collect_xyv(results.right_hand_landmarks, False) if results.right_hand_landmarks else fake_kps | |
| result["face"] = collect_xyv(results.face_landmarks, False) if results.face_landmarks else fake_kps | |
| return result | |
| def get_pymafx(image, landmarks): | |
| # image [3,512,512] | |
| item = {'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]} | |
| for part in ['lhand', 'rhand', 'face']: | |
| kp2d = landmarks[part] | |
| kp2d_valid = kp2d[kp2d[:, 3] > 0.] | |
| if len(kp2d_valid) > 0: | |
| bbox = [min(kp2d_valid[:, 0]), min(kp2d_valid[:, 1]), max(kp2d_valid[:, 0]), max(kp2d_valid[:, 1])] | |
| center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.] | |
| scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2 | |
| # handle invalid part keypoints | |
| if len(kp2d_valid) < 1 or scale_part < 0.01: | |
| center_part = [0, 0] | |
| scale_part = 0.5 | |
| kp2d[:, 3] = 0 | |
| center_part = torch.tensor(center_part).float() | |
| theta_part = torch.zeros(1, 2, 3) | |
| theta_part[:, 0, 0] = scale_part | |
| theta_part[:, 1, 1] = scale_part | |
| theta_part[:, :, -1] = center_part | |
| grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False) | |
| img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float() | |
| item[f'img_{part}'] = img_part | |
| theta_i_inv = torch.zeros_like(theta_part) | |
| theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0] | |
| theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1] | |
| theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1) | |
| item[f'{part}_theta_inv'] = theta_i_inv[0] | |
| return item | |
| def expand_bbox(bbox, width, height, ratio=0.1): | |
| bbox = np.around(bbox).astype(np.int16) | |
| bbox_width = bbox[2] - bbox[0] | |
| bbox_height = bbox[3] - bbox[1] | |
| bbox[1] = max(bbox[1] - bbox_height * ratio, 0) | |
| bbox[3] = min(bbox[3] + bbox_height * ratio, height) | |
| bbox[0] = max(bbox[0] - bbox_width * ratio, 0) | |
| bbox[2] = min(bbox[2] + bbox_width * ratio, width) | |
| return bbox | |
| def remove_floats(mask): | |
| # 1. find all the contours | |
| # 2. fillPoly "True" for the largest one | |
| # 3. fillPoly "False" for its childrens | |
| new_mask = np.zeros(mask.shape) | |
| cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) | |
| cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True) | |
| body_cnt = cnts[cnt_index[0]] | |
| childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0] | |
| childs_cnt = [cnts[idx] for idx in childs_cnt_idx] | |
| cv2.fillPoly(new_mask, [body_cnt], 1) | |
| cv2.fillPoly(new_mask, childs_cnt, 0) | |
| return new_mask | |
| def process_image(img_file, hps_type, single, input_res=512): | |
| img_raw = load_img(img_file) | |
| in_height, in_width = img_raw.shape[:2] | |
| M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2) | |
| # from rectangle to square by padding (input_res*2, input_res*2) | |
| img_square = cv2.warpAffine(img_raw, M[0:2, :], (input_res * 2, input_res * 2), flags=cv2.INTER_CUBIC) | |
| # detection for bbox | |
| detector = detection.maskrcnn_resnet50_fpn(weights=detection.MaskRCNN_ResNet50_FPN_V2_Weights) | |
| detector.eval() | |
| predictions = detector([torch.from_numpy(img_square).permute(2, 0, 1) / 255.])[0] | |
| if single: | |
| top_score = predictions["scores"][predictions["labels"] == 1].max() | |
| human_ids = torch.where(predictions["scores"] == top_score)[0] | |
| else: | |
| human_ids = torch.logical_and(predictions["labels"] == 1, predictions["scores"] > 0.9).nonzero().squeeze(1) | |
| boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy() | |
| masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy() | |
| width = boxes[:, 2] - boxes[:, 0] #(N,) | |
| height = boxes[:, 3] - boxes[:, 1] #(N,) | |
| center = np.array([(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]).T #(N,2) | |
| scale = np.array([width, height]).max(axis=0) / 90. | |
| img_icon_lst = [] | |
| img_crop_lst = [] | |
| img_hps_lst = [] | |
| img_mask_lst = [] | |
| uncrop_param_lst = [] | |
| landmark_lst = [] | |
| hands_visibility_lst = [] | |
| img_pymafx_lst = [] | |
| uncrop_param = { | |
| "center": center, | |
| "scale": scale, | |
| "ori_shape": [in_height, in_width], | |
| "box_shape": [input_res, input_res], | |
| "crop_shape": [input_res * 2, input_res * 2, 3], | |
| "M": M, | |
| } | |
| for idx in range(len(boxes)): | |
| # mask out the pixels of others | |
| if len(masks) > 1: | |
| mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0) | |
| else: | |
| mask_detection = masks[0] * 0. | |
| img_crop, _ = crop( | |
| np.concatenate([img_square, (mask_detection < 0.4) * 255], axis=2), center[idx], scale[idx], [input_res, input_res]) | |
| # get accurate segmentation mask of focus person | |
| img_rembg = remove(img_crop, post_process_mask=True, session=new_session("u2net")) | |
| img_mask = remove_floats(img_rembg[:, :, [3]]) | |
| # required image tensors / arrays | |
| # img_icon (tensor): (-1, 1), [3,512,512] | |
| # img_hps (tensor): (-2.11, 2.44), [3,224,224] | |
| # img_np (array): (0, 255), [512,512,3] | |
| # img_rembg (array): (0, 255), [512,512,4] | |
| # img_mask (array): (0, 1), [512,512,1] | |
| # img_crop (array): (0, 255), [512,512,4] | |
| mean_icon = std_icon = (0.5, 0.5, 0.5) | |
| img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8) | |
| img_icon = transform_to_tensor(512, mean_icon, std_icon)(Image.fromarray(img_np)) * torch.tensor(img_mask).permute( | |
| 2, 0, 1) | |
| img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)) | |
| landmarks = get_keypoints(img_np) | |
| if hps_type == 'pymafx': | |
| img_pymafx_lst.append( | |
| get_pymafx( | |
| transform_to_tensor(512, constants.IMG_NORM_MEAN, constants.IMG_NORM_STD)(Image.fromarray(img_np)), | |
| landmarks)) | |
| img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0) | |
| img_icon_lst.append(img_icon) | |
| img_hps_lst.append(img_hps) | |
| img_mask_lst.append(torch.tensor(img_mask[..., 0])) | |
| uncrop_param_lst.append(uncrop_param) | |
| landmark_lst.append(landmarks['body']) | |
| hands_visibility = [True, True] | |
| if landmarks['lhand'][:, -1].mean() == 0.: | |
| hands_visibility[0] = False | |
| if landmarks['rhand'][:, -1].mean() == 0.: | |
| hands_visibility[1] = False | |
| hands_visibility_lst.append(hands_visibility) | |
| return_dict = { | |
| "img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res] | |
| "img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res] | |
| "img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res] | |
| "img_raw": img_raw, #[H, W, 3] | |
| "img_mask": torch.stack(img_mask_lst).float(), #[N, res, res] | |
| "uncrop_param": uncrop_param, | |
| "landmark": torch.stack(landmark_lst), #[N, 33, 4] | |
| "hands_visibility": hands_visibility_lst, | |
| } | |
| img_pymafx = {} | |
| if len(img_pymafx_lst) > 0: | |
| for idx in range(len(img_pymafx_lst)): | |
| for key in img_pymafx_lst[idx].keys(): | |
| if key not in img_pymafx.keys(): | |
| img_pymafx[key] = [img_pymafx_lst[idx][key]] | |
| else: | |
| img_pymafx[key] += [img_pymafx_lst[idx][key]] | |
| for key in img_pymafx.keys(): | |
| img_pymafx[key] = torch.stack(img_pymafx[key]).float() | |
| return_dict.update({"img_pymafx": img_pymafx}) | |
| return return_dict | |
| def get_transform(center, scale, res): | |
| """Generate transformation matrix.""" | |
| h = 100 * scale | |
| t = np.zeros((3, 3)) | |
| t[0, 0] = float(res[1]) / h | |
| t[1, 1] = float(res[0]) / h | |
| t[0, 2] = res[1] * (-float(center[0]) / h + 0.5) | |
| t[1, 2] = res[0] * (-float(center[1]) / h + 0.5) | |
| t[2, 2] = 1 | |
| return t | |
| def transform(pt, center, scale, res, invert=0): | |
| """Transform pixel location to different reference.""" | |
| t = get_transform(center, scale, res) | |
| if invert: | |
| t = np.linalg.inv(t) | |
| new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.0]).T | |
| new_pt = np.dot(t, new_pt) | |
| return np.around(new_pt[:2]).astype(np.int16) | |
| def crop(img, center, scale, res): | |
| """Crop image according to the supplied bounding box.""" | |
| img_height, img_width = img.shape[:2] | |
| # Upper left point | |
| ul = np.array(transform([0, 0], center, scale, res, invert=1)) | |
| # Bottom right point | |
| br = np.array(transform(res, center, scale, res, invert=1)) | |
| new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
| if len(img.shape) > 2: | |
| new_shape += [img.shape[2]] | |
| new_img = np.zeros(new_shape) | |
| # Range to fill new array | |
| new_x = max(0, -ul[0]), min(br[0], img_width) - ul[0] | |
| new_y = max(0, -ul[1]), min(br[1], img_height) - ul[1] | |
| # Range to sample from original image | |
| old_x = max(0, ul[0]), min(img_width, br[0]) | |
| old_y = max(0, ul[1]), min(img_height, br[1]) | |
| new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] | |
| new_img = F.interpolate( | |
| torch.tensor(new_img).permute(2, 0, 1).unsqueeze(0), res, mode='bilinear').permute(0, 2, 3, | |
| 1)[0].numpy().astype(np.uint8) | |
| return new_img, (old_x, new_x, old_y, new_y, new_shape) | |
| def crop_segmentation(org_coord, res, cropping_parameters): | |
| old_x, new_x, old_y, new_y, new_shape = cropping_parameters | |
| new_coord = np.zeros((org_coord.shape)) | |
| new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0]) | |
| new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0]) | |
| new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1]) | |
| new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0]) | |
| return new_coord | |
| def corner_align(ul, br): | |
| if ul[1] - ul[0] != br[1] - br[0]: | |
| ul[1] = ul[0] + br[1] - br[0] | |
| return ul, br | |
| def uncrop(img, center, scale, orig_shape): | |
| """'Undo' the image cropping/resizing. | |
| This function is used when evaluating mask/part segmentation. | |
| """ | |
| res = img.shape[:2] | |
| # Upper left point | |
| ul = np.array(transform([0, 0], center, scale, res, invert=1)) | |
| # Bottom right point | |
| br = np.array(transform(res, center, scale, res, invert=1)) | |
| # quick fix | |
| ul, br = corner_align(ul, br) | |
| # size of cropped image | |
| crop_shape = [br[1] - ul[1], br[0] - ul[0]] | |
| new_img = np.zeros(orig_shape, dtype=np.uint8) | |
| # Range to fill new array | |
| new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] | |
| new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] | |
| # Range to sample from original image | |
| old_x = max(0, ul[0]), min(orig_shape[1], br[0]) | |
| old_y = max(0, ul[1]), min(orig_shape[0], br[1]) | |
| img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) | |
| new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]] | |
| return new_img | |
| def rot_aa(aa, rot): | |
| """Rotate axis angle parameters.""" | |
| # pose parameters | |
| R = np.array([ | |
| [np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
| [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], | |
| [0, 0, 1], | |
| ]) | |
| # find the rotation of the body in camera frame | |
| per_rdg, _ = cv2.Rodrigues(aa) | |
| # apply the global rotation to the global orientation | |
| resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) | |
| aa = (resrot.T)[0] | |
| return aa | |
| def flip_img(img): | |
| """Flip rgb images or masks. | |
| channels come last, e.g. (256,256,3). | |
| """ | |
| img = np.fliplr(img) | |
| return img | |
| def flip_kp(kp, is_smpl=False): | |
| """Flip keypoints.""" | |
| if len(kp) == 24: | |
| if is_smpl: | |
| flipped_parts = constants.SMPL_JOINTS_FLIP_PERM | |
| else: | |
| flipped_parts = constants.J24_FLIP_PERM | |
| elif len(kp) == 49: | |
| if is_smpl: | |
| flipped_parts = constants.SMPL_J49_FLIP_PERM | |
| else: | |
| flipped_parts = constants.J49_FLIP_PERM | |
| kp = kp[flipped_parts] | |
| kp[:, 0] = -kp[:, 0] | |
| return kp | |
| def flip_pose(pose): | |
| """Flip pose. | |
| The flipping is based on SMPL parameters. | |
| """ | |
| flipped_parts = constants.SMPL_POSE_FLIP_PERM | |
| pose = pose[flipped_parts] | |
| # we also negate the second and the third dimension of the axis-angle | |
| pose[1::3] = -pose[1::3] | |
| pose[2::3] = -pose[2::3] | |
| return pose | |
| def normalize_2d_kp(kp_2d, crop_size=224, inv=False): | |
| # Normalize keypoints between -1, 1 | |
| if not inv: | |
| ratio = 1.0 / crop_size | |
| kp_2d = 2.0 * kp_2d * ratio - 1.0 | |
| else: | |
| ratio = 1.0 / crop_size | |
| kp_2d = (kp_2d + 1.0) / (2 * ratio) | |
| return kp_2d | |
| def visualize_landmarks(image, joints, color): | |
| img_w, img_h = image.shape[:2] | |
| for joint in joints: | |
| image = cv2.circle(image, (int(joint[0] * img_w), int(joint[1] * img_h)), 5, color) | |
| return image | |
| def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): | |
| """ | |
| param joints: [num_joints, 3] | |
| param joints_vis: [num_joints, 3] | |
| return: target, target_weight(1: visible, 0: invisible) | |
| """ | |
| num_joints = joints.shape[0] | |
| device = joints.device | |
| cur_device = torch.device(device.type, device.index) | |
| if not hasattr(heatmap_size, "__len__"): | |
| # width height | |
| heatmap_size = [heatmap_size, heatmap_size] | |
| assert len(heatmap_size) == 2 | |
| target_weight = np.ones((num_joints, 1), dtype=np.float32) | |
| if joints_vis is not None: | |
| target_weight[:, 0] = joints_vis[:, 0] | |
| target = torch.zeros( | |
| (num_joints, heatmap_size[1], heatmap_size[0]), | |
| dtype=torch.float32, | |
| device=cur_device, | |
| ) | |
| tmp_size = sigma * 3 | |
| for joint_id in range(num_joints): | |
| mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) | |
| mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) | |
| # Check that any part of the gaussian is in-bounds | |
| ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] | |
| br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] | |
| if (ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] or br[0] < 0 or br[1] < 0): | |
| # If not, just return the image as is | |
| target_weight[joint_id] = 0 | |
| continue | |
| # # Generate gaussian | |
| size = 2 * tmp_size + 1 | |
| # x = np.arange(0, size, 1, np.float32) | |
| # y = x[:, np.newaxis] | |
| # x0 = y0 = size // 2 | |
| # # The gaussian is not normalized, we want the center value to equal 1 | |
| # g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
| # g = torch.from_numpy(g.astype(np.float32)) | |
| x = torch.arange(0, size, dtype=torch.float32, device=cur_device) | |
| y = x.unsqueeze(-1) | |
| x0 = y0 = size // 2 | |
| # The gaussian is not normalized, we want the center value to equal 1 | |
| g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) | |
| # Usable gaussian range | |
| g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] | |
| g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] | |
| # Image range | |
| img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) | |
| img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) | |
| v = target_weight[joint_id] | |
| if v > 0.5: | |
| target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
| return target, target_weight | |