Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import os
|
5 |
|
6 |
import spaces
|
7 |
from pipeline_flux import FluxPipeline
|
8 |
from transformer_flux import FluxTransformer2DModel
|
9 |
import torch
|
10 |
|
11 |
-
flux_model = "
|
12 |
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}"
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
dtype = torch.bfloat16
|
16 |
|
17 |
transformer = FluxTransformer2DModel.from_pretrained(
|
18 |
-
bfl_repo, subfolder="transformer", torch_dtype=dtype
|
|
|
19 |
)
|
20 |
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype)
|
21 |
pipe.transformer = transformer
|
22 |
pipe.scheduler.config.use_dynamic_shifting = False
|
23 |
pipe.scheduler.config.time_shift = 10
|
24 |
-
pipe.enable_model_cpu_offload()
|
25 |
pipe = pipe.to(device)
|
26 |
|
27 |
-
|
28 |
-
transformer2 = FluxTransformer2DModel.from_pretrained(
|
29 |
-
"black-forest-labs/FLUX.1-dev", subfolder="transformer", torch_dtype=dtype,
|
30 |
-
use_auth_token=os.getenv("HF_TOKEN"),
|
31 |
-
)
|
32 |
-
pipe2 = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype)
|
33 |
-
pipe2.transformer = transformer2
|
34 |
-
pipe2.scheduler.config.use_dynamic_shifting = False
|
35 |
-
pipe2.scheduler.config.time_shift = 10
|
36 |
-
pipe2.enable_model_cpu_offload()
|
37 |
-
pipe2 = pipe.to(device)
|
38 |
-
|
39 |
pipe.load_lora_weights(
|
40 |
"Huage001/URAE",
|
41 |
weight_name="urae_2k_adapter.safetensors",
|
42 |
adapter_name="2k",
|
43 |
)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
MAX_SEED = np.iinfo(np.int32).max
|
55 |
MAX_IMAGE_SIZE = 4096
|
56 |
USE_ZERO_GPU = True
|
@@ -64,17 +52,16 @@ def infer(
|
|
64 |
width,
|
65 |
height,
|
66 |
num_inference_steps,
|
67 |
-
model='2k',
|
68 |
progress=gr.Progress(track_tqdm=True),
|
|
|
69 |
):
|
70 |
print("Using model:", model)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
pipe = pipe if model == "schnell" else pipe2
|
78 |
|
79 |
if randomize_seed:
|
80 |
seed = random.randint(0, MAX_SEED)
|
@@ -138,14 +125,14 @@ with gr.Blocks(css=css) as demo:
|
|
138 |
|
139 |
gr.Markdown("### Setting:")
|
140 |
|
141 |
-
model = gr.Radio(
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
)
|
149 |
|
150 |
with gr.Row():
|
151 |
width = gr.Slider(
|
@@ -179,7 +166,7 @@ with gr.Blocks(css=css) as demo:
|
|
179 |
minimum=1,
|
180 |
maximum=50,
|
181 |
step=1,
|
182 |
-
value=
|
183 |
)
|
184 |
|
185 |
with gr.Column(elem_id="col2"):
|
@@ -190,12 +177,12 @@ with gr.Blocks(css=css) as demo:
|
|
190 |
fn=infer,
|
191 |
inputs=[
|
192 |
prompt,
|
|
|
193 |
seed,
|
194 |
randomize_seed,
|
195 |
width,
|
196 |
height,
|
197 |
num_inference_steps,
|
198 |
-
model,
|
199 |
],
|
200 |
outputs=[result, seed],
|
201 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
|
5 |
import spaces
|
6 |
from pipeline_flux import FluxPipeline
|
7 |
from transformer_flux import FluxTransformer2DModel
|
8 |
import torch
|
9 |
|
10 |
+
flux_model = "dev"
|
11 |
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}"
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
dtype = torch.bfloat16
|
15 |
|
16 |
transformer = FluxTransformer2DModel.from_pretrained(
|
17 |
+
bfl_repo, subfolder="transformer", torch_dtype=dtype,
|
18 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
19 |
)
|
20 |
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype)
|
21 |
pipe.transformer = transformer
|
22 |
pipe.scheduler.config.use_dynamic_shifting = False
|
23 |
pipe.scheduler.config.time_shift = 10
|
24 |
+
# pipe.enable_model_cpu_offload()
|
25 |
pipe = pipe.to(device)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
pipe.load_lora_weights(
|
28 |
"Huage001/URAE",
|
29 |
weight_name="urae_2k_adapter.safetensors",
|
30 |
adapter_name="2k",
|
31 |
)
|
32 |
+
pipe.load_lora_weights(
|
33 |
+
"Huage001/URAE",
|
34 |
+
weight_name="urae_4k_adapter_lora_conversion_dev.safetensors",
|
35 |
+
adapter_name="4k_dev",
|
36 |
+
)
|
37 |
+
pipe.load_lora_weights(
|
38 |
+
"Huage001/URAE",
|
39 |
+
weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors",
|
40 |
+
adapter_name="4k_schnell",
|
41 |
+
)
|
42 |
MAX_SEED = np.iinfo(np.int32).max
|
43 |
MAX_IMAGE_SIZE = 4096
|
44 |
USE_ZERO_GPU = True
|
|
|
52 |
width,
|
53 |
height,
|
54 |
num_inference_steps,
|
|
|
55 |
progress=gr.Progress(track_tqdm=True),
|
56 |
+
model='2k',
|
57 |
):
|
58 |
print("Using model:", model)
|
59 |
+
if model == "2k":
|
60 |
+
pipe.vae.enable_tiling(True)
|
61 |
+
pipe.set_adapters("2k")
|
62 |
+
elif model == "4k":
|
63 |
+
pipe.vae.enable_tiling(True)
|
64 |
+
pipe.set_adapters(f"4k_{flux_model}")
|
|
|
65 |
|
66 |
if randomize_seed:
|
67 |
seed = random.randint(0, MAX_SEED)
|
|
|
125 |
|
126 |
gr.Markdown("### Setting:")
|
127 |
|
128 |
+
# model = gr.Radio(
|
129 |
+
# label="Model",
|
130 |
+
# choices=[
|
131 |
+
# ("2K model", "2k"),
|
132 |
+
# ("4K model (beta)", "4k"),
|
133 |
+
# ],
|
134 |
+
# value="2k",
|
135 |
+
# )
|
136 |
|
137 |
with gr.Row():
|
138 |
width = gr.Slider(
|
|
|
166 |
minimum=1,
|
167 |
maximum=50,
|
168 |
step=1,
|
169 |
+
value=20, # Replace with defaults that work for your model
|
170 |
)
|
171 |
|
172 |
with gr.Column(elem_id="col2"):
|
|
|
177 |
fn=infer,
|
178 |
inputs=[
|
179 |
prompt,
|
180 |
+
# model,
|
181 |
seed,
|
182 |
randomize_seed,
|
183 |
width,
|
184 |
height,
|
185 |
num_inference_steps,
|
|
|
186 |
],
|
187 |
outputs=[result, seed],
|
188 |
)
|