File size: 6,035 Bytes
fb6a167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from torch.utils.data import DataLoader
import torch
import lightning as L
import yaml
import os
import time

from datasets import load_dataset

from .data import ImageConditionDataset, Subject200KDataset, CartoonDataset
from .model import OminiModel
from .callbacks import TrainingCallback


def get_rank():
    try:
        rank = int(os.environ.get("LOCAL_RANK"))
    except:
        rank = 0
    return rank


def get_config():
    config_path = os.environ.get("XFL_CONFIG")
    assert config_path is not None, "Please set the XFL_CONFIG environment variable"
    with open(config_path, "r") as f:
        config = yaml.safe_load(f)
    return config


def init_wandb(wandb_config, run_name):
    import wandb

    try:
        assert os.environ.get("WANDB_API_KEY") is not None
        wandb.init(
            project=wandb_config["project"],
            name=run_name,
            config={},
        )
    except Exception as e:
        print("Failed to initialize WanDB:", e)


def main():
    # Initialize
    is_main_process, rank = get_rank() == 0, get_rank()
    torch.cuda.set_device(rank)
    config = get_config()
    training_config = config["train"]
    run_name = time.strftime("%Y%m%d-%H%M%S")

    # Initialize WanDB
    wandb_config = training_config.get("wandb", None)
    if wandb_config is not None and is_main_process:
        init_wandb(wandb_config, run_name)

    print("Rank:", rank)
    if is_main_process:
        print("Config:", config)

    # Initialize dataset and dataloader
    if training_config["dataset"]["type"] == "subject":
        dataset = load_dataset("Yuanshi/Subjects200K")

        # Define filter function
        def filter_func(item):
            if not item.get("quality_assessment"):
                return False
            return all(
                item["quality_assessment"].get(key, 0) >= 5
                for key in ["compositeStructure", "objectConsistency", "imageQuality"]
            )

        # Filter dataset
        if not os.path.exists("./cache/dataset"):
            os.makedirs("./cache/dataset")
        data_valid = dataset["train"].filter(
            filter_func,
            num_proc=16,
            cache_file_name="./cache/dataset/data_valid.arrow",
        )
        dataset = Subject200KDataset(
            data_valid,
            condition_size=training_config["dataset"]["condition_size"],
            target_size=training_config["dataset"]["target_size"],
            image_size=training_config["dataset"]["image_size"],
            padding=training_config["dataset"]["padding"],
            condition_type=training_config["condition_type"],
            drop_text_prob=training_config["dataset"]["drop_text_prob"],
            drop_image_prob=training_config["dataset"]["drop_image_prob"],
        )
    elif training_config["dataset"]["type"] == "img":
        # Load dataset text-to-image-2M
        dataset = load_dataset(
            "webdataset",
            data_files={"train": training_config["dataset"]["urls"]},
            split="train",
            cache_dir="cache/t2i2m",
            num_proc=32,
        )
        dataset = ImageConditionDataset(
            dataset,
            condition_size=training_config["dataset"]["condition_size"],
            target_size=training_config["dataset"]["target_size"],
            condition_type=training_config["condition_type"],
            drop_text_prob=training_config["dataset"]["drop_text_prob"],
            drop_image_prob=training_config["dataset"]["drop_image_prob"],
            position_scale=training_config["dataset"].get("position_scale", 1.0),
        )
    elif training_config["dataset"]["type"] == "cartoon":
        dataset = load_dataset("saquiboye/oye-cartoon", split="train")
        dataset = CartoonDataset(
            dataset,
            condition_size=training_config["dataset"]["condition_size"],
            target_size=training_config["dataset"]["target_size"],
            image_size=training_config["dataset"]["image_size"],
            padding=training_config["dataset"]["padding"],
            condition_type=training_config["condition_type"],
            drop_text_prob=training_config["dataset"]["drop_text_prob"],
            drop_image_prob=training_config["dataset"]["drop_image_prob"],
        )
    else:
        raise NotImplementedError

    print("Dataset length:", len(dataset))
    train_loader = DataLoader(
        dataset,
        batch_size=training_config["batch_size"],
        shuffle=True,
        num_workers=training_config["dataloader_workers"],
    )

    # Initialize model
    trainable_model = OminiModel(
        flux_pipe_id=config["flux_path"],
        lora_config=training_config["lora_config"],
        device=f"cuda",
        dtype=getattr(torch, config["dtype"]),
        optimizer_config=training_config["optimizer"],
        model_config=config.get("model", {}),
        gradient_checkpointing=training_config.get("gradient_checkpointing", False),
    )

    # Callbacks for logging and saving checkpoints
    training_callbacks = (
        [TrainingCallback(run_name, training_config=training_config)]
        if is_main_process
        else []
    )

    # Initialize trainer
    trainer = L.Trainer(
        accumulate_grad_batches=training_config["accumulate_grad_batches"],
        callbacks=training_callbacks,
        enable_checkpointing=False,
        enable_progress_bar=False,
        logger=False,
        max_steps=training_config.get("max_steps", -1),
        max_epochs=training_config.get("max_epochs", -1),
        gradient_clip_val=training_config.get("gradient_clip_val", 0.5),
    )

    setattr(trainer, "training_config", training_config)

    # Save config
    save_path = training_config.get("save_path", "./output")
    if is_main_process:
        os.makedirs(f"{save_path}/{run_name}")
        with open(f"{save_path}/{run_name}/config.yaml", "w") as f:
            yaml.dump(config, f)

    # Start training
    trainer.fit(trainable_model, train_loader)


if __name__ == "__main__":
    main()