File size: 11,384 Bytes
fb6a167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from PIL import Image, ImageFilter, ImageDraw
import cv2
import numpy as np
from torch.utils.data import Dataset
import torchvision.transforms as T
import random


class Subject200KDataset(Dataset):
    def __init__(
        self,
        base_dataset,
        condition_size: int = 512,
        target_size: int = 512,
        image_size: int = 512,
        padding: int = 0,
        condition_type: str = "subject",
        drop_text_prob: float = 0.1,
        drop_image_prob: float = 0.1,
        return_pil_image: bool = False,
    ):
        self.base_dataset = base_dataset
        self.condition_size = condition_size
        self.target_size = target_size
        self.image_size = image_size
        self.padding = padding
        self.condition_type = condition_type
        self.drop_text_prob = drop_text_prob
        self.drop_image_prob = drop_image_prob
        self.return_pil_image = return_pil_image

        self.to_tensor = T.ToTensor()

    def __len__(self):
        return len(self.base_dataset) * 2

    def __getitem__(self, idx):
        # If target is 0, left image is target, right image is condition
        target = idx % 2
        item = self.base_dataset[idx // 2]

        # Crop the image to target and condition
        image = item["image"]
        left_img = image.crop(
            (
                self.padding,
                self.padding,
                self.image_size + self.padding,
                self.image_size + self.padding,
            )
        )
        right_img = image.crop(
            (
                self.image_size + self.padding * 2,
                self.padding,
                self.image_size * 2 + self.padding * 2,
                self.image_size + self.padding,
            )
        )

        # Get the target and condition image
        target_image, condition_img = (
            (left_img, right_img) if target == 0 else (right_img, left_img)
        )

        # Resize the image
        condition_img = condition_img.resize(
            (self.condition_size, self.condition_size)
        ).convert("RGB")
        target_image = target_image.resize(
            (self.target_size, self.target_size)
        ).convert("RGB")

        # Get the description
        description = item["description"][
            "description_0" if target == 0 else "description_1"
        ]

        # Randomly drop text or image
        drop_text = random.random() < self.drop_text_prob
        drop_image = random.random() < self.drop_image_prob
        if drop_text:
            description = ""
        if drop_image:
            condition_img = Image.new(
                "RGB", (self.condition_size, self.condition_size), (0, 0, 0)
            )

        return {
            "image": self.to_tensor(target_image),
            "condition": self.to_tensor(condition_img),
            "condition_type": self.condition_type,
            "description": description,
            # 16 is the downscale factor of the image
            "position_delta": np.array([0, -self.condition_size // 16]),
            **({"pil_image": image} if self.return_pil_image else {}),
        }


class ImageConditionDataset(Dataset):
    def __init__(
        self,
        base_dataset,
        condition_size: int = 512,
        target_size: int = 512,
        condition_type: str = "canny",
        drop_text_prob: float = 0.1,
        drop_image_prob: float = 0.1,
        return_pil_image: bool = False,
        position_scale=1.0,
    ):
        self.base_dataset = base_dataset
        self.condition_size = condition_size
        self.target_size = target_size
        self.condition_type = condition_type
        self.drop_text_prob = drop_text_prob
        self.drop_image_prob = drop_image_prob
        self.return_pil_image = return_pil_image
        self.position_scale = position_scale

        self.to_tensor = T.ToTensor()

    def __len__(self):
        return len(self.base_dataset)

    @property
    def depth_pipe(self):
        if not hasattr(self, "_depth_pipe"):
            from transformers import pipeline

            self._depth_pipe = pipeline(
                task="depth-estimation",
                model="LiheYoung/depth-anything-small-hf",
                device="cpu",
            )
        return self._depth_pipe

    def _get_canny_edge(self, img):
        resize_ratio = self.condition_size / max(img.size)
        img = img.resize(
            (int(img.size[0] * resize_ratio), int(img.size[1] * resize_ratio))
        )
        img_np = np.array(img)
        img_gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
        edges = cv2.Canny(img_gray, 100, 200)
        return Image.fromarray(edges).convert("RGB")

    def __getitem__(self, idx):
        image = self.base_dataset[idx]["jpg"]
        image = image.resize((self.target_size, self.target_size)).convert("RGB")
        description = self.base_dataset[idx]["json"]["prompt"]

        enable_scale = random.random() < 1
        if not enable_scale:
            condition_size = int(self.condition_size * self.position_scale)
            position_scale = 1.0
        else:
            condition_size = self.condition_size
            position_scale = self.position_scale

        # Get the condition image
        position_delta = np.array([0, 0])
        if self.condition_type == "canny":
            condition_img = self._get_canny_edge(image)
        elif self.condition_type == "coloring":
            condition_img = (
                image.resize((condition_size, condition_size))
                .convert("L")
                .convert("RGB")
            )
        elif self.condition_type == "deblurring":
            blur_radius = random.randint(1, 10)
            condition_img = (
                image.convert("RGB")
                .filter(ImageFilter.GaussianBlur(blur_radius))
                .resize((condition_size, condition_size))
                .convert("RGB")
            )
        elif self.condition_type == "depth":
            condition_img = self.depth_pipe(image)["depth"].convert("RGB")
            condition_img = condition_img.resize((condition_size, condition_size))
        elif self.condition_type == "depth_pred":
            condition_img = image
            image = self.depth_pipe(condition_img)["depth"].convert("RGB")
            description = f"[depth] {description}"
        elif self.condition_type == "fill":
            condition_img = image.resize((condition_size, condition_size)).convert(
                "RGB"
            )
            w, h = image.size
            x1, x2 = sorted([random.randint(0, w), random.randint(0, w)])
            y1, y2 = sorted([random.randint(0, h), random.randint(0, h)])
            mask = Image.new("L", image.size, 0)
            draw = ImageDraw.Draw(mask)
            draw.rectangle([x1, y1, x2, y2], fill=255)
            if random.random() > 0.5:
                mask = Image.eval(mask, lambda a: 255 - a)
            condition_img = Image.composite(
                image, Image.new("RGB", image.size, (0, 0, 0)), mask
            )
        elif self.condition_type == "sr":
            condition_img = image.resize((condition_size, condition_size)).convert(
                "RGB"
            )
            position_delta = np.array([0, -condition_size // 16])

        else:
            raise ValueError(f"Condition type {self.condition_type} not implemented")

        # Randomly drop text or image
        drop_text = random.random() < self.drop_text_prob
        drop_image = random.random() < self.drop_image_prob
        if drop_text:
            description = ""
        if drop_image:
            condition_img = Image.new(
                "RGB", (condition_size, condition_size), (0, 0, 0)
            )

        return {
            "image": self.to_tensor(image),
            "condition": self.to_tensor(condition_img),
            "condition_type": self.condition_type,
            "description": description,
            "position_delta": position_delta,
            **({"pil_image": [image, condition_img]} if self.return_pil_image else {}),
            **({"position_scale": position_scale} if position_scale != 1.0 else {}),
        }


class CartoonDataset(Dataset):
    def __init__(
        self,
        base_dataset,
        condition_size: int = 1024,
        target_size: int = 1024,
        image_size: int = 1024,
        padding: int = 0,
        condition_type: str = "cartoon",
        drop_text_prob: float = 0.1,
        drop_image_prob: float = 0.1,
        return_pil_image: bool = False,
    ):
        self.base_dataset = base_dataset
        self.condition_size = condition_size
        self.target_size = target_size
        self.image_size = image_size
        self.padding = padding
        self.condition_type = condition_type
        self.drop_text_prob = drop_text_prob
        self.drop_image_prob = drop_image_prob
        self.return_pil_image = return_pil_image

        self.to_tensor = T.ToTensor()

    def __len__(self):
        return len(self.base_dataset)

    def __getitem__(self, idx):
        data = self.base_dataset[idx]
        condition_img = data["condition"]
        target_image = data["target"]

        # Tag
        tag = data["tags"][0]

        target_description = data["target_description"]

        description = {
            "lion": "lion like animal",
            "bear": "bear like animal",
            "gorilla": "gorilla like animal",
            "dog": "dog like animal",
            "elephant": "elephant like animal",
            "eagle": "eagle like bird",
            "tiger": "tiger like animal",
            "owl": "owl like bird",
            "woman": "woman",
            "parrot": "parrot like bird",
            "mouse": "mouse like animal",
            "man": "man",
            "pigeon": "pigeon like bird",
            "girl": "girl",
            "panda": "panda like animal",
            "crocodile": "crocodile like animal",
            "rabbit": "rabbit like animal",
            "boy": "boy",
            "monkey": "monkey like animal",
            "cat": "cat like animal",
        }

        # Resize the image
        condition_img = condition_img.resize(
            (self.condition_size, self.condition_size)
        ).convert("RGB")
        target_image = target_image.resize(
            (self.target_size, self.target_size)
        ).convert("RGB")

        # Process datum to create description
        description = data.get(
            "description",
            f"Photo of a {description[tag]} cartoon character in a white background. Character is facing {target_description['facing_direction']}. Character pose is {target_description['pose']}.",
        )

        # Randomly drop text or image
        drop_text = random.random() < self.drop_text_prob
        drop_image = random.random() < self.drop_image_prob
        if drop_text:
            description = ""
        if drop_image:
            condition_img = Image.new(
                "RGB", (self.condition_size, self.condition_size), (0, 0, 0)
            )

        return {
            "image": self.to_tensor(target_image),
            "condition": self.to_tensor(condition_img),
            "condition_type": self.condition_type,
            "description": description,
            # 16 is the downscale factor of the image
            "position_delta": np.array([0, -16]),
        }