|
from toolbox import trimmed_format_exc, get_conf, ProxyNetworkActivate |
|
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom |
|
from request_llms.bridge_all import predict_no_ui_long_connection |
|
import time |
|
|
|
def gpt_academic_generate_oai_reply( |
|
self, |
|
messages, |
|
sender, |
|
config, |
|
): |
|
llm_config = self.llm_config if config is None else config |
|
if llm_config is False: |
|
return False, None |
|
if messages is None: |
|
messages = self._oai_messages[sender] |
|
|
|
inputs = messages[-1]['content'] |
|
history = [] |
|
for message in messages[:-1]: |
|
history.append(message['content']) |
|
context=messages[-1].pop("context", None) |
|
assert context is None, "预留参数 context 未实现" |
|
|
|
reply = predict_no_ui_long_connection( |
|
inputs=inputs, |
|
llm_kwargs=llm_config, |
|
history=history, |
|
sys_prompt=self._oai_system_message[0]['content'], |
|
console_slience=True |
|
) |
|
assumed_done = reply.endswith('\nTERMINATE') |
|
return True, reply |
|
|
|
class AutoGenGeneral(PluginMultiprocessManager): |
|
def gpt_academic_print_override(self, user_proxy, message, sender): |
|
|
|
self.child_conn.send(PipeCom("show", sender.name + "\n\n---\n\n" + message["content"])) |
|
|
|
def gpt_academic_get_human_input(self, user_proxy, message): |
|
|
|
patience = 300 |
|
begin_waiting_time = time.time() |
|
self.child_conn.send(PipeCom("interact", message)) |
|
while True: |
|
time.sleep(0.5) |
|
if self.child_conn.poll(): |
|
wait_success = True |
|
break |
|
if time.time() - begin_waiting_time > patience: |
|
self.child_conn.send(PipeCom("done", "")) |
|
wait_success = False |
|
break |
|
if wait_success: |
|
return self.child_conn.recv().content |
|
else: |
|
raise TimeoutError("等待用户输入超时") |
|
|
|
def define_agents(self): |
|
raise NotImplementedError |
|
|
|
def exe_autogen(self, input): |
|
|
|
input = input.content |
|
with ProxyNetworkActivate("AutoGen"): |
|
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker} |
|
agents = self.define_agents() |
|
user_proxy = None |
|
assistant = None |
|
for agent_kwargs in agents: |
|
agent_cls = agent_kwargs.pop('cls') |
|
kwargs = { |
|
'llm_config':self.llm_kwargs, |
|
'code_execution_config':code_execution_config |
|
} |
|
kwargs.update(agent_kwargs) |
|
agent_handle = agent_cls(**kwargs) |
|
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b) |
|
for d in agent_handle._reply_func_list: |
|
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply': |
|
d['reply_func'] = gpt_academic_generate_oai_reply |
|
if agent_kwargs['name'] == 'user_proxy': |
|
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a) |
|
user_proxy = agent_handle |
|
if agent_kwargs['name'] == 'assistant': assistant = agent_handle |
|
try: |
|
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义") |
|
user_proxy.initiate_chat(assistant, message=input) |
|
except Exception as e: |
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str)) |
|
|
|
def subprocess_worker(self, child_conn): |
|
|
|
self.child_conn = child_conn |
|
while True: |
|
msg = self.child_conn.recv() |
|
self.exe_autogen(msg) |
|
|
|
|
|
class AutoGenGroupChat(AutoGenGeneral): |
|
def exe_autogen(self, input): |
|
|
|
import autogen |
|
|
|
input = input.content |
|
with ProxyNetworkActivate("AutoGen"): |
|
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker} |
|
agents = self.define_agents() |
|
agents_instances = [] |
|
for agent_kwargs in agents: |
|
agent_cls = agent_kwargs.pop("cls") |
|
kwargs = {"code_execution_config": code_execution_config} |
|
kwargs.update(agent_kwargs) |
|
agent_handle = agent_cls(**kwargs) |
|
agent_handle._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b) |
|
agents_instances.append(agent_handle) |
|
if agent_kwargs["name"] == "user_proxy": |
|
user_proxy = agent_handle |
|
user_proxy.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a) |
|
try: |
|
groupchat = autogen.GroupChat(agents=agents_instances, messages=[], max_round=50) |
|
manager = autogen.GroupChatManager(groupchat=groupchat, **self.define_group_chat_manager_config()) |
|
manager._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b) |
|
manager.get_human_input = lambda a: self.gpt_academic_get_human_input(manager, a) |
|
if user_proxy is None: |
|
raise Exception("user_proxy is not defined") |
|
user_proxy.initiate_chat(manager, message=input) |
|
except Exception: |
|
tb_str = "```\n" + trimmed_format_exc() + "```" |
|
self.child_conn.send(PipeCom("done", "AutoGen exe failed: \n\n" + tb_str)) |
|
|
|
def define_group_chat_manager_config(self): |
|
raise NotImplementedError |
|
|