Spaces:
Sleeping
Sleeping
FauziIsyrinApridal
commited on
Commit
Β·
22f049b
1
Parent(s):
886eee7
remove supabase parameter from get timestamp and fix evaluate stil asking for billing though
Browse files- app.py +3 -3
- evaluate.py +126 -339
- rag_evaluation_20250627_133749.log +0 -0
app.py
CHANGED
|
@@ -26,9 +26,9 @@ VECTOR_STORE_PREFIX = "vector_store"
|
|
| 26 |
# ---------------------------------------------------------
|
| 27 |
# β‘οΈ UTILITY
|
| 28 |
# ---------------------------------------------------------
|
| 29 |
-
def get_latest_data_timestamp_from_files(bucket_name: str
|
| 30 |
"""Get the latest timestamp from files in a Supabase storage bucket."""
|
| 31 |
-
files = list_all_files(bucket_name
|
| 32 |
latest_time = 0.0
|
| 33 |
for file in files:
|
| 34 |
iso_time = file.get("updated_at") or file.get("created_at")
|
|
@@ -65,7 +65,7 @@ def vector_store_is_outdated() -> bool:
|
|
| 65 |
if supabase_timestamp is None:
|
| 66 |
return True
|
| 67 |
supabase_time = datetime.fromisoformat(supabase_timestamp.replace("Z", "+00:00")).timestamp()
|
| 68 |
-
data_time = get_latest_data_timestamp_from_files("pnp-bot-storage"
|
| 69 |
|
| 70 |
return data_time > supabase_time
|
| 71 |
|
|
|
|
| 26 |
# ---------------------------------------------------------
|
| 27 |
# β‘οΈ UTILITY
|
| 28 |
# ---------------------------------------------------------
|
| 29 |
+
def get_latest_data_timestamp_from_files(bucket_name: str) -> float:
|
| 30 |
"""Get the latest timestamp from files in a Supabase storage bucket."""
|
| 31 |
+
files = list_all_files(bucket_name)
|
| 32 |
latest_time = 0.0
|
| 33 |
for file in files:
|
| 34 |
iso_time = file.get("updated_at") or file.get("created_at")
|
|
|
|
| 65 |
if supabase_timestamp is None:
|
| 66 |
return True
|
| 67 |
supabase_time = datetime.fromisoformat(supabase_timestamp.replace("Z", "+00:00")).timestamp()
|
| 68 |
+
data_time = get_latest_data_timestamp_from_files("pnp-bot-storage")
|
| 69 |
|
| 70 |
return data_time > supabase_time
|
| 71 |
|
evaluate.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import time
|
| 3 |
import random
|
| 4 |
import logging
|
|
@@ -21,28 +22,32 @@ from app.document_processor import load_vector_store_from_supabase
|
|
| 21 |
from app.prompts import sahabat_prompt
|
| 22 |
from app.db import supabase
|
| 23 |
|
| 24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
logging.basicConfig(
|
| 26 |
level=logging.INFO,
|
| 27 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 28 |
handlers=[
|
| 29 |
-
logging.FileHandler(
|
| 30 |
-
|
| 31 |
]
|
| 32 |
)
|
| 33 |
logger = logging.getLogger(__name__)
|
| 34 |
|
|
|
|
| 35 |
load_dotenv()
|
| 36 |
-
|
| 37 |
-
# Konfigurasi
|
| 38 |
BUCKET_NAME = "pnp-bot-storage-archive"
|
| 39 |
VECTOR_STORE_PREFIX = "vector_store"
|
| 40 |
-
|
| 41 |
-
# Rate limiting settings
|
| 42 |
MAX_CALLS_PER_MINUTE = 50
|
| 43 |
MAX_CALLS_PER_HOUR = 1000
|
| 44 |
|
| 45 |
-
# Dataset evaluasi
|
| 46 |
evaluation_dataset = [
|
| 47 |
{
|
| 48 |
'question': '''Bagaimana sistem pendidikan yang diterapkan di Politeknik Negeri Padang?''',
|
|
@@ -90,6 +95,7 @@ evaluation_dataset = [
|
|
| 90 |
}
|
| 91 |
]
|
| 92 |
|
|
|
|
| 93 |
# Schema untuk evaluasi
|
| 94 |
class CorrectnessGrade(TypedDict):
|
| 95 |
explanation: Annotated[str, ..., "Penjelasan alasan penilaian"]
|
|
@@ -170,7 +176,7 @@ Nilai relevansi False berarti FAKTA sama sekali tidak terkait dengan PERTANYAAN.
|
|
| 170 |
Jelaskan penalaran Anda secara bertahap untuk memastikan penalaran dan kesimpulan benar.
|
| 171 |
Hindari menyebutkan jawaban benar di awal."""
|
| 172 |
|
| 173 |
-
#
|
| 174 |
class SafeLLMEvaluator:
|
| 175 |
def __init__(self, model_name="gpt-4o", temperature=0):
|
| 176 |
self.model_name = model_name
|
|
@@ -178,350 +184,131 @@ class SafeLLMEvaluator:
|
|
| 178 |
self._init_llms()
|
| 179 |
|
| 180 |
def _init_llms(self):
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
).with_structured_output(CorrectnessGrade, method="json_schema", strict=True)
|
| 187 |
-
|
| 188 |
-
self.relevance_llm = ChatOpenAI(
|
| 189 |
-
model=self.model_name,
|
| 190 |
-
temperature=self.temperature
|
| 191 |
-
).with_structured_output(RelevanceGrade, method="json_schema", strict=True)
|
| 192 |
-
|
| 193 |
-
self.grounded_llm = ChatOpenAI(
|
| 194 |
-
model=self.model_name,
|
| 195 |
-
temperature=self.temperature
|
| 196 |
-
).with_structured_output(GroundedGrade, method="json_schema", strict=True)
|
| 197 |
-
|
| 198 |
-
self.retrieval_relevance_llm = ChatOpenAI(
|
| 199 |
-
model=self.model_name,
|
| 200 |
-
temperature=self.temperature
|
| 201 |
-
).with_structured_output(RetrievalRelevanceGrade, method="json_schema", strict=True)
|
| 202 |
-
|
| 203 |
-
logger.info(f"β
LLM evaluators initialized with model: {self.model_name}")
|
| 204 |
-
|
| 205 |
-
except Exception as e:
|
| 206 |
-
logger.error(f"β Failed to initialize LLM evaluators: {e}")
|
| 207 |
-
raise
|
| 208 |
|
| 209 |
-
# Global evaluator instance
|
| 210 |
evaluator = SafeLLMEvaluator()
|
| 211 |
|
| 212 |
-
# Rate
|
| 213 |
@sleep_and_retry
|
| 214 |
@limits(calls=MAX_CALLS_PER_MINUTE, period=60)
|
| 215 |
-
@backoff.on_exception(
|
| 216 |
-
backoff.expo,
|
| 217 |
-
(Exception,),
|
| 218 |
-
max_tries=3,
|
| 219 |
-
max_time=30,
|
| 220 |
-
jitter=backoff.random_jitter
|
| 221 |
-
)
|
| 222 |
def safe_api_call(llm, messages):
|
| 223 |
-
|
| 224 |
-
try:
|
| 225 |
-
response = llm.invoke(messages)
|
| 226 |
-
logger.debug(f"β
API call successful")
|
| 227 |
-
return response
|
| 228 |
-
except Exception as e:
|
| 229 |
-
logger.warning(f"β οΈ API call failed: {e}")
|
| 230 |
-
raise
|
| 231 |
|
|
|
|
| 232 |
@traceable(name="Create RAG Chain for Evaluation")
|
| 233 |
def create_rag_chain(vector_store):
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
# Reduced retrieval count to minimize API calls
|
| 248 |
-
chain = ConversationalRetrievalChain.from_llm(
|
| 249 |
-
llm,
|
| 250 |
-
retriever=vector_store.as_retriever(search_kwargs={"k": 4}), # Reduced from 6 to 4
|
| 251 |
-
combine_docs_chain_kwargs={"prompt": sahabat_prompt},
|
| 252 |
-
return_source_documents=True,
|
| 253 |
-
memory=memory
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
logger.info("β
RAG chain created successfully")
|
| 257 |
-
return chain
|
| 258 |
-
|
| 259 |
-
except Exception as e:
|
| 260 |
-
logger.error(f"β Failed to create RAG chain: {e}")
|
| 261 |
-
raise
|
| 262 |
|
| 263 |
@traceable(name="RAG Bot Answer")
|
| 264 |
-
@backoff.on_exception(backoff.expo, Exception, max_tries=3)
|
| 265 |
def rag_bot_answer(question: str, vector_store) -> dict:
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
"""
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
return False, f"Error in evaluation: {str(e)}"
|
| 303 |
-
|
| 304 |
-
def relevance_evaluator(question: str, answer: str) -> tuple[bool, str]:
|
| 305 |
-
"""Evaluator untuk relevansi jawaban dengan error handling"""
|
| 306 |
-
try:
|
| 307 |
-
content = f"PERTANYAAN: {question}\nJAWABAN SISWA: {answer}"
|
| 308 |
-
messages = [
|
| 309 |
-
{"role": "system", "content": relevance_instructions},
|
| 310 |
-
{"role": "user", "content": content}
|
| 311 |
-
]
|
| 312 |
-
|
| 313 |
-
grade = safe_api_call(evaluator.relevance_llm, messages)
|
| 314 |
-
logger.debug(f"β
Relevance evaluation completed")
|
| 315 |
-
return grade["relevant"], grade["explanation"]
|
| 316 |
-
|
| 317 |
-
except Exception as e:
|
| 318 |
-
logger.error(f"β Relevance evaluation failed: {e}")
|
| 319 |
-
return False, f"Error in evaluation: {str(e)}"
|
| 320 |
-
|
| 321 |
-
def groundedness_evaluator(answer: str, documents) -> tuple[bool, str]:
|
| 322 |
-
"""Evaluator untuk groundedness jawaban dengan error handling"""
|
| 323 |
-
try:
|
| 324 |
-
if not documents:
|
| 325 |
-
return False, "No documents provided for grounding evaluation"
|
| 326 |
-
|
| 327 |
-
doc_string = "\n\n".join([doc.page_content for doc in documents])
|
| 328 |
-
content = f"FAKTA: {doc_string}\nJAWABAN SISWA: {answer}"
|
| 329 |
-
messages = [
|
| 330 |
-
{"role": "system", "content": grounded_instructions},
|
| 331 |
-
{"role": "user", "content": content}
|
| 332 |
-
]
|
| 333 |
-
|
| 334 |
-
grade = safe_api_call(evaluator.grounded_llm, messages)
|
| 335 |
-
logger.debug(f"β
Groundedness evaluation completed")
|
| 336 |
-
return grade["grounded"], grade["explanation"]
|
| 337 |
-
|
| 338 |
-
except Exception as e:
|
| 339 |
-
logger.error(f"β Groundedness evaluation failed: {e}")
|
| 340 |
-
return False, f"Error in evaluation: {str(e)}"
|
| 341 |
-
|
| 342 |
-
def retrieval_relevance_evaluator(question: str, documents) -> tuple[bool, str]:
|
| 343 |
-
"""Evaluator untuk relevansi retrieval dengan error handling"""
|
| 344 |
-
try:
|
| 345 |
-
if not documents:
|
| 346 |
-
return False, "No documents provided for retrieval evaluation"
|
| 347 |
-
|
| 348 |
-
doc_string = "\n\n".join([doc.page_content for doc in documents])
|
| 349 |
-
content = f"FAKTA: {doc_string}\nPERTANYAAN: {question}"
|
| 350 |
-
messages = [
|
| 351 |
-
{"role": "system", "content": retrieval_relevance_instructions},
|
| 352 |
-
{"role": "user", "content": content}
|
| 353 |
-
]
|
| 354 |
-
|
| 355 |
-
grade = safe_api_call(evaluator.retrieval_relevance_llm, messages)
|
| 356 |
-
logger.debug(f"β
Retrieval relevance evaluation completed")
|
| 357 |
-
return grade["relevant"], grade["explanation"]
|
| 358 |
-
|
| 359 |
-
except Exception as e:
|
| 360 |
-
logger.error(f"β Retrieval relevance evaluation failed: {e}")
|
| 361 |
-
return False, f"Error in evaluation: {str(e)}"
|
| 362 |
-
|
| 363 |
-
def controlled_delay(min_delay=2, max_delay=5):
|
| 364 |
-
"""Add controlled delay to avoid rate limits"""
|
| 365 |
-
delay = random.uniform(min_delay, max_delay)
|
| 366 |
-
logger.debug(f"β³ Waiting {delay:.2f} seconds...")
|
| 367 |
-
time.sleep(delay)
|
| 368 |
-
|
| 369 |
@traceable(name="Run RAG Evaluation Enhanced")
|
| 370 |
-
def run_enhanced_evaluation(
|
| 371 |
-
"
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
# Load vector store
|
| 375 |
-
logger.info("π Memuat vector store dari Supabase...")
|
| 376 |
-
try:
|
| 377 |
-
vector_store = load_vector_store_from_supabase(supabase, BUCKET_NAME, VECTOR_STORE_PREFIX)
|
| 378 |
-
if not vector_store:
|
| 379 |
-
logger.error("β Gagal memuat vector store!")
|
| 380 |
-
return None
|
| 381 |
-
logger.info("β
Vector store berhasil dimuat!")
|
| 382 |
-
except Exception as e:
|
| 383 |
-
logger.error(f"β Error loading vector store: {e}")
|
| 384 |
-
return None
|
| 385 |
-
|
| 386 |
-
# Determine evaluation scope
|
| 387 |
-
if batch_size:
|
| 388 |
-
end_index = min(start_index + batch_size, len(evaluation_dataset))
|
| 389 |
-
dataset_subset = evaluation_dataset[start_index:end_index]
|
| 390 |
-
logger.info(f"π Evaluating batch {start_index}-{end_index-1} ({len(dataset_subset)} questions)")
|
| 391 |
-
else:
|
| 392 |
-
dataset_subset = evaluation_dataset
|
| 393 |
-
logger.info(f"π Evaluating all {len(dataset_subset)} questions")
|
| 394 |
-
|
| 395 |
-
# Hasil evaluasi
|
| 396 |
results = []
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
error_count = 0
|
| 403 |
-
|
| 404 |
-
for i, item in enumerate(dataset_subset, 1):
|
| 405 |
-
question_start_time = time.time()
|
| 406 |
-
logger.info(f"\nπ Evaluasi pertanyaan {i}/{total_questions}")
|
| 407 |
-
|
| 408 |
-
question = item['question']
|
| 409 |
-
ground_truth = item['ground_truth']
|
| 410 |
-
|
| 411 |
try:
|
| 412 |
-
# Dapatkan jawaban dari RAG
|
| 413 |
-
logger.info(f"π€ Getting RAG answer...")
|
| 414 |
rag_result = rag_bot_answer(question, vector_store)
|
| 415 |
-
answer = rag_result[
|
| 416 |
-
documents = rag_result[
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
result = {
|
| 440 |
-
'question_index': start_index + i,
|
| 441 |
-
'question': question,
|
| 442 |
-
'answer': answer,
|
| 443 |
-
'ground_truth': ground_truth,
|
| 444 |
-
'documents_count': len(documents),
|
| 445 |
-
'correctness': correctness_score,
|
| 446 |
-
'correctness_explanation': correctness_explanation,
|
| 447 |
-
'relevance': relevance_score,
|
| 448 |
-
'relevance_explanation': relevance_explanation,
|
| 449 |
-
'groundedness': groundedness_score,
|
| 450 |
-
'groundedness_explanation': groundedness_explanation,
|
| 451 |
-
'retrieval_relevance': retrieval_relevance_score,
|
| 452 |
-
'retrieval_explanation': retrieval_explanation,
|
| 453 |
-
'processing_time': time.time() - question_start_time
|
| 454 |
-
}
|
| 455 |
-
|
| 456 |
-
results.append(result)
|
| 457 |
-
success_count += 1
|
| 458 |
-
|
| 459 |
-
logger.info(f"π Skor - Benar: {correctness_score}, Relevan: {relevance_score}, "
|
| 460 |
-
f"Berdasarkan Dokumen: {groundedness_score}, Retrieval Relevan: {retrieval_relevance_score}")
|
| 461 |
-
logger.info(f"β±οΈ Waktu pemrosesan: {result['processing_time']:.2f} detik")
|
| 462 |
-
|
| 463 |
except Exception as e:
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
# Progress update
|
| 487 |
-
elapsed_time = time.time() - start_time
|
| 488 |
-
avg_time_per_question = elapsed_time / i
|
| 489 |
-
estimated_total_time = avg_time_per_question * total_questions
|
| 490 |
-
remaining_time = estimated_total_time - elapsed_time
|
| 491 |
-
|
| 492 |
-
logger.info(f"π Progress: {i}/{total_questions} ({i/total_questions*100:.1f}%)")
|
| 493 |
-
logger.info(f"β±οΈ Waktu berlalu: {elapsed_time:.1f}s, Estimasi sisa: {remaining_time:.1f}s")
|
| 494 |
-
|
| 495 |
-
# Add delay between questions
|
| 496 |
-
if i < total_questions:
|
| 497 |
-
controlled_delay(2, 4)
|
| 498 |
-
|
| 499 |
-
# Hitung statistik keseluruhan
|
| 500 |
-
total_time = time.time() - start_time
|
| 501 |
-
successful_results = [r for r in results if r['answer'] != "ERROR"]
|
| 502 |
-
|
| 503 |
-
if successful_results:
|
| 504 |
-
total_correctness = sum(r['correctness'] for r in successful_results)
|
| 505 |
-
total_relevance = sum(r['relevance'] for r in successful_results)
|
| 506 |
-
total_groundedness = sum(r['groundedness'] for r in successful_results)
|
| 507 |
-
total_retrieval_relevance = sum(r['retrieval_relevance'] for r in successful_results)
|
| 508 |
-
successful_count = len(successful_results)
|
| 509 |
-
else:
|
| 510 |
-
total_correctness = total_relevance = total_groundedness = total_retrieval_relevance = 0
|
| 511 |
-
successful_count = 0
|
| 512 |
-
|
| 513 |
-
# Print results
|
| 514 |
-
logger.info(f"\nπ HASIL EVALUASI ENHANCED:")
|
| 515 |
-
logger.info(f"{'='*60}")
|
| 516 |
-
logger.info(f"Total Pertanyaan: {total_questions}")
|
| 517 |
-
logger.info(f"Berhasil Diproses: {success_count}")
|
| 518 |
-
logger.info(f"Error: {error_count}")
|
| 519 |
-
logger.info(f"Total Waktu: {total_time:.1f} detik ({total_time/60:.1f} menit)")
|
| 520 |
-
logger.info(f"Rata-rata per Pertanyaan: {total_time/total_questions:.1f} detik")
|
| 521 |
-
|
| 522 |
-
if successful_count > 0:
|
| 523 |
-
logger.info(f"\nπ― SKOR EVALUASI (dari {successful_count} pertanyaan berhasil):")
|
| 524 |
-
logger.info(f"Kebenaran (Correctness): {total_correctness}/{successful_count} ({total_correctness/successful_count*100:.1f}%)")
|
| 525 |
-
logger.info(f"Relevansi (Relevance): {total_relevance}/{successful_count} ({total_relevance/successful_count*100:.1f}%)")
|
| 526 |
-
logger.info(f"Berdasarkan Dokumen (Groundedness): {total_groundedness}/{successful_count} ({total_groundedness/successful_count*100:.1f}%)")
|
| 527 |
-
logger.info(f"Retrieval Relevan: {total_retrieval_relevance}/{successful_count} ({total_retrieval_relevance/successful_count*100:.1f}%)")
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
import time
|
| 4 |
import random
|
| 5 |
import logging
|
|
|
|
| 22 |
from app.prompts import sahabat_prompt
|
| 23 |
from app.db import supabase
|
| 24 |
|
| 25 |
+
# === Logging UTF-8 Safe ===
|
| 26 |
+
class UTF8StreamHandler(logging.StreamHandler):
|
| 27 |
+
def __init__(self, stream=None):
|
| 28 |
+
if stream is None:
|
| 29 |
+
stream = open(sys.stdout.fileno(), mode='w', encoding='utf-8', buffering=1)
|
| 30 |
+
super().__init__(stream)
|
| 31 |
+
|
| 32 |
+
log_filename = f'rag_evaluation_{datetime.now().strftime("%Y%m%d_%H%M%S")}.log'
|
| 33 |
logging.basicConfig(
|
| 34 |
level=logging.INFO,
|
| 35 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 36 |
handlers=[
|
| 37 |
+
logging.FileHandler(log_filename, encoding='utf-8'),
|
| 38 |
+
UTF8StreamHandler()
|
| 39 |
]
|
| 40 |
)
|
| 41 |
logger = logging.getLogger(__name__)
|
| 42 |
|
| 43 |
+
# === Konfigurasi ===
|
| 44 |
load_dotenv()
|
|
|
|
|
|
|
| 45 |
BUCKET_NAME = "pnp-bot-storage-archive"
|
| 46 |
VECTOR_STORE_PREFIX = "vector_store"
|
|
|
|
|
|
|
| 47 |
MAX_CALLS_PER_MINUTE = 50
|
| 48 |
MAX_CALLS_PER_HOUR = 1000
|
| 49 |
|
| 50 |
+
# === Dataset evaluasi ===
|
| 51 |
evaluation_dataset = [
|
| 52 |
{
|
| 53 |
'question': '''Bagaimana sistem pendidikan yang diterapkan di Politeknik Negeri Padang?''',
|
|
|
|
| 95 |
}
|
| 96 |
]
|
| 97 |
|
| 98 |
+
|
| 99 |
# Schema untuk evaluasi
|
| 100 |
class CorrectnessGrade(TypedDict):
|
| 101 |
explanation: Annotated[str, ..., "Penjelasan alasan penilaian"]
|
|
|
|
| 176 |
Jelaskan penalaran Anda secara bertahap untuk memastikan penalaran dan kesimpulan benar.
|
| 177 |
Hindari menyebutkan jawaban benar di awal."""
|
| 178 |
|
| 179 |
+
# === Evaluator ===
|
| 180 |
class SafeLLMEvaluator:
|
| 181 |
def __init__(self, model_name="gpt-4o", temperature=0):
|
| 182 |
self.model_name = model_name
|
|
|
|
| 184 |
self._init_llms()
|
| 185 |
|
| 186 |
def _init_llms(self):
|
| 187 |
+
self.grader_llm = ChatOpenAI(model=self.model_name, temperature=self.temperature).with_structured_output(CorrectnessGrade, method="json_schema", strict=True)
|
| 188 |
+
self.relevance_llm = ChatOpenAI(model=self.model_name, temperature=self.temperature).with_structured_output(RelevanceGrade, method="json_schema", strict=True)
|
| 189 |
+
self.grounded_llm = ChatOpenAI(model=self.model_name, temperature=self.temperature).with_structured_output(GroundedGrade, method="json_schema", strict=True)
|
| 190 |
+
self.retrieval_relevance_llm = ChatOpenAI(model=self.model_name, temperature=self.temperature).with_structured_output(RetrievalRelevanceGrade, method="json_schema", strict=True)
|
| 191 |
+
logger.info(f"β
LLM evaluators initialized with model: {self.model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
|
|
|
| 193 |
evaluator = SafeLLMEvaluator()
|
| 194 |
|
| 195 |
+
# === Rate Limiting & Retry ===
|
| 196 |
@sleep_and_retry
|
| 197 |
@limits(calls=MAX_CALLS_PER_MINUTE, period=60)
|
| 198 |
+
@backoff.on_exception(backoff.expo, (Exception,), max_tries=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
def safe_api_call(llm, messages):
|
| 200 |
+
return llm.invoke(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
# === RAG Chain ===
|
| 203 |
@traceable(name="Create RAG Chain for Evaluation")
|
| 204 |
def create_rag_chain(vector_store):
|
| 205 |
+
llm = Replicate(
|
| 206 |
+
model="fauziisyrinapridal/sahabat-ai-v1:afb9fa89fe786362f619fd4fef34bd1f7a4a4da23073d8a6fbf54dcbe458f216",
|
| 207 |
+
model_kwargs={"temperature": 0.1, "top_p": 0.9, "max_new_tokens": 4000},
|
| 208 |
+
replicate_api_token=os.getenv("REPLICATE_API_TOKEN"),
|
| 209 |
+
|
| 210 |
+
)
|
| 211 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key='answer')
|
| 212 |
+
chain = ConversationalRetrievalChain.from_llm(
|
| 213 |
+
llm, retriever=vector_store.as_retriever(search_kwargs={"k": 4}),
|
| 214 |
+
combine_docs_chain_kwargs={"prompt": sahabat_prompt},
|
| 215 |
+
return_source_documents=True, memory=memory
|
| 216 |
+
)
|
| 217 |
+
return chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
@traceable(name="RAG Bot Answer")
|
|
|
|
| 220 |
def rag_bot_answer(question: str, vector_store) -> dict:
|
| 221 |
+
chain = create_rag_chain(vector_store)
|
| 222 |
+
result = chain({"question": question})
|
| 223 |
+
return {"answer": result['answer'], "documents": result.get('source_documents', [])}
|
| 224 |
+
|
| 225 |
+
# === Evaluator Functions ===
|
| 226 |
+
def correctness_evaluator(question, answer, ground_truth):
|
| 227 |
+
messages = [{"role": "system", "content": correctness_instructions},
|
| 228 |
+
{"role": "user", "content": f"PERTANYAAN: {question}\nJAWABAN BENAR: {ground_truth}\nJAWABAN SISWA: {answer}"}]
|
| 229 |
+
grade = safe_api_call(evaluator.grader_llm, messages)
|
| 230 |
+
return grade["correct"], grade["explanation"]
|
| 231 |
+
|
| 232 |
+
def relevance_evaluator(question, answer):
|
| 233 |
+
messages = [{"role": "system", "content": relevance_instructions},
|
| 234 |
+
{"role": "user", "content": f"PERTANYAAN: {question}\nJAWABAN SISWA: {answer}"}]
|
| 235 |
+
grade = safe_api_call(evaluator.relevance_llm, messages)
|
| 236 |
+
return grade["relevant"], grade["explanation"]
|
| 237 |
+
|
| 238 |
+
def groundedness_evaluator(answer, documents):
|
| 239 |
+
doc_string = "\n\n".join([doc.page_content for doc in documents])
|
| 240 |
+
messages = [{"role": "system", "content": grounded_instructions},
|
| 241 |
+
{"role": "user", "content": f"FAKTA: {doc_string}\nJAWABAN SISWA: {answer}"}]
|
| 242 |
+
grade = safe_api_call(evaluator.grounded_llm, messages)
|
| 243 |
+
return grade["grounded"], grade["explanation"]
|
| 244 |
+
|
| 245 |
+
def retrieval_relevance_evaluator(question, documents):
|
| 246 |
+
doc_string = "\n\n".join([doc.page_content for doc in documents])
|
| 247 |
+
messages = [{"role": "system", "content": retrieval_relevance_instructions},
|
| 248 |
+
{"role": "user", "content": f"FAKTA: {doc_string}\nPERTANYAAN: {question}"}]
|
| 249 |
+
grade = safe_api_call(evaluator.retrieval_relevance_llm, messages)
|
| 250 |
+
return grade["relevant"], grade["explanation"]
|
| 251 |
+
|
| 252 |
+
# === Delay helper ===
|
| 253 |
+
def controlled_delay(min_delay=1, max_delay=3):
|
| 254 |
+
time.sleep(random.uniform(min_delay, max_delay))
|
| 255 |
+
|
| 256 |
+
# === Evaluation Runner ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
@traceable(name="Run RAG Evaluation Enhanced")
|
| 258 |
+
def run_enhanced_evaluation():
|
| 259 |
+
logger.info("π Starting evaluation...")
|
| 260 |
+
vector_store = load_vector_store_from_supabase(supabase, BUCKET_NAME, VECTOR_STORE_PREFIX)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
results = []
|
| 262 |
+
|
| 263 |
+
for idx, item in enumerate(evaluation_dataset, 1):
|
| 264 |
+
question = item["question"]
|
| 265 |
+
ground_truth = item["ground_truth"]
|
| 266 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
try:
|
|
|
|
|
|
|
| 268 |
rag_result = rag_bot_answer(question, vector_store)
|
| 269 |
+
answer = rag_result["answer"]
|
| 270 |
+
documents = rag_result["documents"]
|
| 271 |
+
|
| 272 |
+
correctness, correctness_exp = correctness_evaluator(question, answer, ground_truth)
|
| 273 |
+
relevance, relevance_exp = relevance_evaluator(question, answer)
|
| 274 |
+
grounded, grounded_exp = groundedness_evaluator(answer, documents)
|
| 275 |
+
retrieval, retrieval_exp = retrieval_relevance_evaluator(question, documents)
|
| 276 |
+
|
| 277 |
+
results.append({
|
| 278 |
+
"question": question,
|
| 279 |
+
"answer": answer,
|
| 280 |
+
"correctness": correctness,
|
| 281 |
+
"correctness_explanation": correctness_exp,
|
| 282 |
+
"relevance": relevance,
|
| 283 |
+
"relevance_explanation": relevance_exp,
|
| 284 |
+
"groundedness": grounded,
|
| 285 |
+
"groundedness_explanation": grounded_exp,
|
| 286 |
+
"retrieval_relevance": retrieval,
|
| 287 |
+
"retrieval_explanation": retrieval_exp,
|
| 288 |
+
})
|
| 289 |
+
|
| 290 |
+
logger.info(f"[{idx}] β
Done: {question[:50]}...")
|
| 291 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
except Exception as e:
|
| 293 |
+
logger.error(f"β Error on Q{idx}: {e}")
|
| 294 |
+
results.append({
|
| 295 |
+
"question": question,
|
| 296 |
+
"answer": "ERROR",
|
| 297 |
+
"correctness": False,
|
| 298 |
+
"correctness_explanation": str(e),
|
| 299 |
+
"relevance": False,
|
| 300 |
+
"relevance_explanation": str(e),
|
| 301 |
+
"groundedness": False,
|
| 302 |
+
"groundedness_explanation": str(e),
|
| 303 |
+
"retrieval_relevance": False,
|
| 304 |
+
"retrieval_explanation": str(e),
|
| 305 |
+
})
|
| 306 |
+
|
| 307 |
+
controlled_delay()
|
| 308 |
+
|
| 309 |
+
logger.info("π― Evaluation finished")
|
| 310 |
+
return results
|
| 311 |
+
|
| 312 |
+
# === Jalankan saat script dieksekusi langsung ===
|
| 313 |
+
if __name__ == "__main__":
|
| 314 |
+
run_enhanced_evaluation()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag_evaluation_20250627_133749.log
DELETED
|
File without changes
|