Spaces:
Running
Running
FauziIsyrinApridal
commited on
Commit
·
1c19c94
1
Parent(s):
40eca06
update penyimpanan vectore_store ke supabase
Browse files- app.py +68 -30
- app/document_processor.py +74 -24
app.py
CHANGED
@@ -1,12 +1,16 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
-
|
|
|
|
|
4 |
from langsmith import traceable
|
5 |
|
6 |
from app.chat import initialize_session_state, display_chat_history
|
7 |
from app.data_loader import get_data, load_docs
|
8 |
-
from app.document_processor import process_documents,
|
9 |
from app.prompts import sahabat_prompt
|
|
|
10 |
from langchain_community.llms import Replicate
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
@@ -14,7 +18,9 @@ from langchain_community.document_transformers import LongContextReorder
|
|
14 |
|
15 |
load_dotenv()
|
16 |
|
17 |
-
|
|
|
|
|
18 |
DATA_DIR = "data"
|
19 |
|
20 |
@traceable(name="Create RAG Conversational Chain")
|
@@ -23,21 +29,21 @@ def create_conversational_chain(vector_store):
|
|
23 |
model="fauziisyrinapridal/sahabat-ai-v1:afb9fa89fe786362f619fd4fef34bd1f7a4a4da23073d8a6fbf54dcbe458f216",
|
24 |
model_kwargs={"temperature": 0.1, "top_p": 0.9, "max_new_tokens": 6000}
|
25 |
)
|
26 |
-
|
27 |
memory = ConversationBufferMemory(
|
28 |
memory_key="chat_history",
|
29 |
return_messages=True,
|
30 |
output_key='answer'
|
31 |
)
|
32 |
-
|
33 |
chain = ConversationalRetrievalChain.from_llm(
|
34 |
llm,
|
35 |
-
retriever=vector_store.as_retriever(search_kwargs={"k":
|
36 |
combine_docs_chain_kwargs={"prompt": sahabat_prompt},
|
37 |
return_source_documents=True,
|
38 |
memory=memory
|
39 |
)
|
40 |
-
|
41 |
return chain
|
42 |
|
43 |
def reorder_embedding(docs):
|
@@ -53,44 +59,76 @@ def get_latest_data_timestamp(folder):
|
|
53 |
latest_time = max(latest_time, file_time)
|
54 |
return latest_time
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def vector_store_is_outdated():
|
57 |
-
if
|
|
|
|
|
58 |
return True
|
59 |
-
|
|
|
|
|
|
|
60 |
data_time = get_latest_data_timestamp(DATA_DIR)
|
61 |
-
|
|
|
62 |
|
63 |
@traceable(name="Main Chatbot RAG App")
|
64 |
def main():
|
65 |
initialize_session_state()
|
66 |
get_data()
|
67 |
-
|
68 |
-
vector_store = None #
|
69 |
-
|
70 |
if len(st.session_state['history']) == 0:
|
71 |
if vector_store_is_outdated():
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
else:
|
81 |
-
#
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
else:
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
st.session_state['vector_store'] = vector_store
|
88 |
-
|
89 |
if st.session_state['vector_store'] is not None:
|
90 |
chain = create_conversational_chain(st.session_state['vector_store'])
|
91 |
display_chat_history(chain)
|
92 |
|
93 |
-
|
94 |
if __name__ == "__main__":
|
95 |
-
main()
|
96 |
-
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
+
import tempfile
|
5 |
+
import zipfile
|
6 |
+
from dotenv import load_dotenv
|
7 |
from langsmith import traceable
|
8 |
|
9 |
from app.chat import initialize_session_state, display_chat_history
|
10 |
from app.data_loader import get_data, load_docs
|
11 |
+
from app.document_processor import process_documents, save_vector_store_to_supabase, load_vector_store_from_supabase
|
12 |
from app.prompts import sahabat_prompt
|
13 |
+
from app.db import supabase
|
14 |
from langchain_community.llms import Replicate
|
15 |
from langchain.memory import ConversationBufferMemory
|
16 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
21 |
+
# Supabase configuration
|
22 |
+
BUCKET_NAME = "pnp-bot-storage-archive"
|
23 |
+
VECTOR_STORE_FILE = "vector_store.zip"
|
24 |
DATA_DIR = "data"
|
25 |
|
26 |
@traceable(name="Create RAG Conversational Chain")
|
|
|
29 |
model="fauziisyrinapridal/sahabat-ai-v1:afb9fa89fe786362f619fd4fef34bd1f7a4a4da23073d8a6fbf54dcbe458f216",
|
30 |
model_kwargs={"temperature": 0.1, "top_p": 0.9, "max_new_tokens": 6000}
|
31 |
)
|
32 |
+
|
33 |
memory = ConversationBufferMemory(
|
34 |
memory_key="chat_history",
|
35 |
return_messages=True,
|
36 |
output_key='answer'
|
37 |
)
|
38 |
+
|
39 |
chain = ConversationalRetrievalChain.from_llm(
|
40 |
llm,
|
41 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 10}),
|
42 |
combine_docs_chain_kwargs={"prompt": sahabat_prompt},
|
43 |
return_source_documents=True,
|
44 |
memory=memory
|
45 |
)
|
46 |
+
|
47 |
return chain
|
48 |
|
49 |
def reorder_embedding(docs):
|
|
|
59 |
latest_time = max(latest_time, file_time)
|
60 |
return latest_time
|
61 |
|
62 |
+
def get_supabase_vector_store_timestamp():
|
63 |
+
"""Get the timestamp of vector store in Supabase storage"""
|
64 |
+
try:
|
65 |
+
response = supabase.storage.from_(BUCKET_NAME).list()
|
66 |
+
for file in response:
|
67 |
+
if file['name'] == VECTOR_STORE_FILE:
|
68 |
+
return file['updated_at']
|
69 |
+
return None
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error getting Supabase timestamp: {e}")
|
72 |
+
return None
|
73 |
+
|
74 |
def vector_store_is_outdated():
|
75 |
+
"""Check if vector store needs to be updated based on data folder changes"""
|
76 |
+
supabase_timestamp = get_supabase_vector_store_timestamp()
|
77 |
+
if supabase_timestamp is None:
|
78 |
return True
|
79 |
+
|
80 |
+
# Convert supabase timestamp to epoch time for comparison
|
81 |
+
from datetime import datetime
|
82 |
+
supabase_time = datetime.fromisoformat(supabase_timestamp.replace('Z', '+00:00')).timestamp()
|
83 |
data_time = get_latest_data_timestamp(DATA_DIR)
|
84 |
+
|
85 |
+
return data_time > supabase_time
|
86 |
|
87 |
@traceable(name="Main Chatbot RAG App")
|
88 |
def main():
|
89 |
initialize_session_state()
|
90 |
get_data()
|
91 |
+
|
92 |
+
vector_store = None # Initialize first
|
93 |
+
|
94 |
if len(st.session_state['history']) == 0:
|
95 |
if vector_store_is_outdated():
|
96 |
+
with st.spinner("Loading and processing documents..."):
|
97 |
+
docs = load_docs()
|
98 |
+
if len(docs) > 0:
|
99 |
+
reordered_docs = reorder_embedding(docs)
|
100 |
+
vector_store = process_documents(reordered_docs)
|
101 |
+
|
102 |
+
# Save to Supabase instead of local storage
|
103 |
+
with st.spinner("Uploading vector store to Supabase..."):
|
104 |
+
success = save_vector_store_to_supabase(vector_store, supabase, BUCKET_NAME, VECTOR_STORE_FILE)
|
105 |
+
if success:
|
106 |
+
st.success("Vector store uploaded to Supabase successfully!")
|
107 |
+
else:
|
108 |
+
st.error("Failed to upload vector store to Supabase")
|
109 |
+
else:
|
110 |
+
st.warning("No documents found in 'data/' folder. Chatbot can still be used, but without document context.")
|
111 |
+
vector_store = None
|
112 |
else:
|
113 |
+
# Load vector store from Supabase
|
114 |
+
with st.spinner("Loading vector store from Supabase..."):
|
115 |
+
vector_store = load_vector_store_from_supabase(supabase, BUCKET_NAME, VECTOR_STORE_FILE)
|
116 |
+
if vector_store:
|
117 |
+
st.success("Vector store loaded from Supabase successfully!")
|
118 |
+
else:
|
119 |
+
st.error("Failed to load vector store from Supabase")
|
120 |
else:
|
121 |
+
# Use cached vector store for existing sessions
|
122 |
+
vector_store = st.session_state.get('vector_store')
|
123 |
+
if vector_store is None:
|
124 |
+
# Fallback: load from Supabase if not in session
|
125 |
+
vector_store = load_vector_store_from_supabase(supabase, BUCKET_NAME, VECTOR_STORE_FILE)
|
126 |
+
|
127 |
st.session_state['vector_store'] = vector_store
|
128 |
+
|
129 |
if st.session_state['vector_store'] is not None:
|
130 |
chain = create_conversational_chain(st.session_state['vector_store'])
|
131 |
display_chat_history(chain)
|
132 |
|
|
|
133 |
if __name__ == "__main__":
|
134 |
+
main()
|
|
app/document_processor.py
CHANGED
@@ -2,37 +2,88 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
import os
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
def
|
9 |
-
"""
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return None
|
27 |
|
28 |
-
|
29 |
def process_documents(docs):
|
30 |
embeddings = HuggingFaceEmbeddings(
|
31 |
model_name="LazarusNLP/all-indo-e5-small-v4",
|
32 |
-
model_kwargs={"device": "cpu"},
|
33 |
encode_kwargs={"normalize_embeddings": True}
|
34 |
)
|
35 |
-
|
36 |
text_splitter = RecursiveCharacterTextSplitter(
|
37 |
chunk_size=1500,
|
38 |
chunk_overlap=300
|
@@ -40,5 +91,4 @@ def process_documents(docs):
|
|
40 |
text_chunks = text_splitter.split_documents(docs)
|
41 |
vector_store = FAISS.from_documents(text_chunks, embeddings)
|
42 |
|
43 |
-
return vector_store
|
44 |
-
|
|
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
import os
|
5 |
+
import tempfile
|
6 |
+
import zipfile
|
7 |
+
import streamlit as st
|
8 |
|
9 |
+
def save_vector_store_to_supabase(vector_store, supabase, bucket_name, file_name):
|
10 |
+
"""Save vector store to Supabase storage as a zip file."""
|
11 |
+
try:
|
12 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
13 |
+
# Save vector store locally first
|
14 |
+
local_path = os.path.join(temp_dir, "vector_store")
|
15 |
+
vector_store.save_local(local_path)
|
16 |
+
|
17 |
+
# Create zip file
|
18 |
+
zip_path = os.path.join(temp_dir, "vector_store.zip")
|
19 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
20 |
+
for root, dirs, files in os.walk(local_path):
|
21 |
+
for file in files:
|
22 |
+
file_path = os.path.join(root, file)
|
23 |
+
arc_name = os.path.relpath(file_path, local_path)
|
24 |
+
zipf.write(file_path, arc_name)
|
25 |
+
|
26 |
+
# Upload to Supabase
|
27 |
+
with open(zip_path, 'rb') as f:
|
28 |
+
response = supabase.storage.from_(bucket_name).upload(file_name, f, {"upsert": "true"})
|
29 |
+
|
30 |
+
print(f"Vector store uploaded to Supabase: {bucket_name}/{file_name}")
|
31 |
+
return True
|
32 |
+
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error uploading vector store to Supabase: {e}")
|
35 |
+
st.error(f"Error uploading to Supabase: {e}")
|
36 |
+
return False
|
37 |
|
38 |
+
def load_vector_store_from_supabase(supabase, bucket_name, file_name):
|
39 |
+
"""Load vector store from Supabase storage."""
|
40 |
+
try:
|
41 |
+
# Download from Supabase
|
42 |
+
response = supabase.storage.from_(bucket_name).download(file_name)
|
43 |
+
|
44 |
+
if not response:
|
45 |
+
print("Vector store file not found in Supabase.")
|
46 |
+
return None
|
47 |
+
|
48 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
49 |
+
# Save downloaded zip file
|
50 |
+
zip_path = os.path.join(temp_dir, "vector_store.zip")
|
51 |
+
with open(zip_path, 'wb') as f:
|
52 |
+
f.write(response)
|
53 |
+
|
54 |
+
# Extract zip file
|
55 |
+
extract_path = os.path.join(temp_dir, "vector_store")
|
56 |
+
with zipfile.ZipFile(zip_path, 'r') as zipf:
|
57 |
+
zipf.extractall(extract_path)
|
58 |
+
|
59 |
+
# Load vector store
|
60 |
+
embeddings = HuggingFaceEmbeddings(
|
61 |
+
model_name="LazarusNLP/all-indo-e5-small-v4",
|
62 |
+
model_kwargs={"device": "cpu"},
|
63 |
+
encode_kwargs={"normalize_embeddings": True}
|
64 |
+
)
|
65 |
+
|
66 |
+
vector_store = FAISS.load_local(
|
67 |
+
extract_path,
|
68 |
+
embeddings,
|
69 |
+
allow_dangerous_deserialization=True
|
70 |
+
)
|
71 |
+
|
72 |
+
print(f"Vector store loaded from Supabase: {bucket_name}/{file_name}")
|
73 |
+
return vector_store
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
print(f"Error loading vector store from Supabase: {e}")
|
77 |
+
st.error(f"Error loading from Supabase: {e}")
|
78 |
return None
|
79 |
|
|
|
80 |
def process_documents(docs):
|
81 |
embeddings = HuggingFaceEmbeddings(
|
82 |
model_name="LazarusNLP/all-indo-e5-small-v4",
|
83 |
+
model_kwargs={"device": "cpu"},
|
84 |
encode_kwargs={"normalize_embeddings": True}
|
85 |
)
|
86 |
+
|
87 |
text_splitter = RecursiveCharacterTextSplitter(
|
88 |
chunk_size=1500,
|
89 |
chunk_overlap=300
|
|
|
91 |
text_chunks = text_splitter.split_documents(docs)
|
92 |
vector_store = FAISS.from_documents(text_chunks, embeddings)
|
93 |
|
94 |
+
return vector_store
|
|