Spaces:
Running
Running
import streamlit as st | |
import os | |
from dotenv import load_dotenv | |
from langsmith import traceable | |
from app.chat import initialize_session_state, display_chat_history | |
from app.data_loader import get_data, load_docs | |
from app.document_processor import process_documents, save_vector_store, load_vector_store | |
from app.prompts import sahabat_prompt | |
from langchain_community.llms import Replicate | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.document_transformers import LongContextReorder | |
load_dotenv() | |
VECTOR_STORE_PATH = "vector_store_data" | |
DATA_DIR = "data" | |
def create_conversational_chain(vector_store): | |
llm = Replicate( | |
model="fauziisyrinapridal/sahabat-ai-v1:afb9fa89fe786362f619fd4fef34bd1f7a4a4da23073d8a6fbf54dcbe458f216", | |
model_kwargs={"temperature": 0.1, "top_p": 0.9, "max_new_tokens": 6000} | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
return_messages=True, | |
output_key='answer' | |
) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=vector_store.as_retriever(search_kwargs={"k": 6}), | |
combine_docs_chain_kwargs={"prompt": sahabat_prompt}, | |
return_source_documents=True, | |
memory=memory | |
) | |
return chain | |
def reorder_embedding(docs): | |
reordering = LongContextReorder() | |
return reordering.transform_documents(docs) | |
def get_latest_data_timestamp(folder): | |
latest_time = 0 | |
for root, _, files in os.walk(folder): | |
for file in files: | |
path = os.path.join(root, file) | |
file_time = os.path.getmtime(path) | |
latest_time = max(latest_time, file_time) | |
return latest_time | |
def vector_store_is_outdated(): | |
if not os.path.exists(VECTOR_STORE_PATH): | |
return True | |
vector_store_time = os.path.getmtime(VECTOR_STORE_PATH) | |
data_time = get_latest_data_timestamp(DATA_DIR) | |
return data_time > vector_store_time | |
def main(): | |
initialize_session_state() | |
get_data() | |
if len(st.session_state['history']) == 0: | |
if vector_store_is_outdated(): | |
docs = load_docs() | |
reordered_docs = reorder_embedding(docs) | |
vector_store = process_documents(reordered_docs) | |
save_vector_store(vector_store) | |
else: | |
vector_store = load_vector_store() | |
st.session_state['vector_store'] = vector_store | |
if st.session_state['vector_store'] is not None: | |
chain = create_conversational_chain(st.session_state['vector_store']) | |
display_chat_history(chain) | |
if __name__ == "__main__": | |
main() | |