Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import functools | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from .modeling import Sam | |
from typing import Optional, Tuple | |
from .utils.transforms import ResizeLongestSide | |
def postprocess_masks( | |
img_size: int, | |
masks: torch.Tensor, | |
input_size: Tuple[int, ...], | |
original_size: Tuple[int, ...], | |
) -> torch.Tensor: | |
""" | |
Remove padding and upscale masks to the original image size. | |
Arguments: | |
masks (torch.Tensor): Batched masks from the mask_decoder, | |
in BxCxHxW format. | |
input_size (tuple(int, int)): The size of the image input to the | |
model, in (H, W) format. Used to remove padding. | |
original_size (tuple(int, int)): The original size of the image | |
before resizing for input to the model, in (H, W) format. | |
Returns: | |
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W) | |
is given by original_size. | |
""" | |
masks = F.interpolate( | |
masks, | |
(img_size, img_size), | |
mode="bilinear", | |
align_corners=False, | |
) | |
masks = masks[..., : input_size[0], : input_size[1]] | |
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) | |
return masks | |
def preprocess(img_size: int, pixel_mean: torch.Tensor, pixel_std: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
# Normalize colors | |
x = (x - pixel_mean) / pixel_std | |
# Pad | |
h, w = x.shape[-2:] | |
padh = img_size - h | |
padw = img_size - w | |
x = F.pad(x, (0, padw, 0, padh)) | |
return x | |
class SamPredictor: | |
original_sam_img_size: int = 1024 | |
pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
def __init__( | |
self, | |
sam_model: Sam, | |
) -> None: | |
""" | |
Uses SAM to calculate the image embedding for an image, and then | |
allow repeated, efficient mask prediction given prompts. | |
Arguments: | |
sam_model (Sam): The model to use for mask prediction. | |
""" | |
super().__init__() | |
self.model = sam_model | |
self.image_encoder_type = self.model.image_encoder.__class__.__name__ | |
if self.image_encoder_type in ['TinyViT', 'FasterTinyViT', 'SAMEncoderViT', 'DINOSAMViT', 'FlashVisionTransformer']: | |
self.multi_output = False | |
if self.image_encoder_type in ['FasterTinyViT', 'SAMEncoderViT', 'DINOSAMViT', 'FlashVisionTransformer']: | |
self.input_img_size = (self.model.image_encoder.img_size, self.model.image_encoder.img_size) | |
else: | |
self.input_img_size = (self.original_sam_img_size, self.original_sam_img_size) | |
else: | |
self.multi_output = True | |
self.input_img_size = (self.original_sam_img_size, self.original_sam_img_size) | |
self.transform = ResizeLongestSide(self.original_sam_img_size) | |
self.preprocess = functools.partial(preprocess, self.original_sam_img_size, self.pixel_mean, self.pixel_std) | |
self.postprocess_masks = functools.partial(postprocess_masks, self.original_sam_img_size) | |
self.reset_image() | |
def set_image( | |
self, | |
image: np.ndarray, | |
image_format: str = "RGB", | |
) -> None: | |
""" | |
Calculates the image embeddings for the provided image, allowing | |
masks to be predicted with the 'predict' method. | |
Arguments: | |
image (np.ndarray): The image for calculating masks. Expects an | |
image in HWC uint8 format, with pixel values in [0, 255]. | |
image_format (str): The color format of the image, in ['RGB', 'BGR']. | |
""" | |
assert image_format in [ | |
"RGB", | |
"BGR", | |
], f"image_format must be in ['RGB', 'BGR'], is {image_format}." | |
# import pdb;pdb.set_trace() | |
if image_format != self.model.image_format: | |
image = image[..., ::-1] | |
# Transform the image to the form expected by the model | |
# import pdb;pdb.set_trace() | |
input_image = self.transform.apply_image(image) | |
input_image_torch = torch.as_tensor(input_image, device=self.device) | |
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] | |
self.set_torch_image(input_image_torch, image.shape[:2]) | |
def set_torch_image( | |
self, | |
transformed_image: torch.Tensor, | |
original_image_size: Tuple[int, ...], | |
) -> None: | |
""" | |
Calculates the image embeddings for the provided image, allowing | |
masks to be predicted with the 'predict' method. Expects the input | |
image to be already transformed to the format expected by the model. | |
Arguments: | |
transformed_image (torch.Tensor): The input image, with shape | |
1x3xHxW, which has been transformed with ResizeLongestSide. | |
original_image_size (tuple(int, int)): The size of the image | |
before transformation, in (H, W) format. | |
""" | |
assert ( | |
len(transformed_image.shape) == 4 | |
and transformed_image.shape[1] == 3 | |
# and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_sizenot | |
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." | |
self.reset_image() | |
self.original_size = original_image_size | |
self.input_size = tuple(transformed_image.shape[-2:]) | |
input_image = self.preprocess(transformed_image.cpu()).to(self.model.device) | |
if self.input_img_size != (1024, 1024): | |
input_image = F.interpolate(input_image, size=self.input_img_size, mode='bilinear') | |
if not self.multi_output: | |
self.features = self.model.image_encoder(input_image) | |
self.interm_features = None | |
else: | |
self.features, self.interm_features = self.model.image_encoder(input_image) | |
# self.features, self.interm_features = self.model.image_encoder(input_image), None if self.use_mobile_sam else self.model.image_encoder(input_image) | |
self.is_image_set = True | |
def predict( | |
self, | |
point_coords: Optional[np.ndarray] = None, | |
point_labels: Optional[np.ndarray] = None, | |
box: Optional[np.ndarray] = None, | |
mask_input: Optional[np.ndarray] = None, | |
multimask_output: bool = True, | |
return_logits: bool = False, | |
hq_token_only: bool =False, | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
""" | |
Predict masks for the given input prompts, using the currently set image. | |
Arguments: | |
point_coords (np.ndarray or None): A Nx2 array of point prompts to the | |
model. Each point is in (X,Y) in pixels. | |
point_labels (np.ndarray or None): A length N array of labels for the | |
point prompts. 1 indicates a foreground point and 0 indicates a | |
background point. | |
box (np.ndarray or None): A length 4 array given a box prompt to the | |
model, in XYXY format. | |
mask_input (np.ndarray): A low resolution mask input to the model, typically | |
coming from a previous prediction iteration. Has form 1xHxW, where | |
for SAM, H=W=256. | |
multimask_output (bool): If true, the model will return three masks. | |
For ambiguous input prompts (such as a single click), this will often | |
produce better masks than a single prediction. If only a single | |
mask is needed, the model's predicted quality score can be used | |
to select the best mask. For non-ambiguous prompts, such as multiple | |
input prompts, multimask_output=False can give better results. | |
return_logits (bool): If true, returns un-thresholded masks logits | |
instead of a binary mask. | |
Returns: | |
(np.ndarray): The output masks in CxHxW format, where C is the | |
number of masks, and (H, W) is the original image size. | |
(np.ndarray): An array of length C containing the model's | |
predictions for the quality of each mask. | |
(np.ndarray): An array of shape CxHxW, where C is the number | |
of masks and H=W=256. These low resolution logits can be passed to | |
a subsequent iteration as mask input. | |
""" | |
if not self.is_image_set: | |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") | |
# Transform input prompts | |
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None | |
if point_coords is not None: | |
assert ( | |
point_labels is not None | |
), "point_labels must be supplied if point_coords is supplied." | |
point_coords = self.transform.apply_coords(point_coords, self.original_size) | |
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) | |
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) | |
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] | |
if box is not None: | |
box = self.transform.apply_boxes(box, self.original_size) | |
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) | |
box_torch = box_torch[None, :] | |
if mask_input is not None: | |
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) | |
mask_input_torch = mask_input_torch[None, :, :, :] | |
masks, iou_predictions, low_res_masks = self.predict_torch( | |
coords_torch, | |
labels_torch, | |
box_torch, | |
mask_input_torch, | |
multimask_output, | |
return_logits=return_logits, | |
hq_token_only=hq_token_only, | |
) | |
masks_np = masks[0].detach().cpu().numpy() | |
iou_predictions_np = iou_predictions[0].detach().cpu().numpy() | |
low_res_masks_np = low_res_masks[0].detach().cpu().numpy() | |
return masks_np, iou_predictions_np, low_res_masks_np | |
def predict_torch( | |
self, | |
point_coords: Optional[torch.Tensor], | |
point_labels: Optional[torch.Tensor], | |
boxes: Optional[torch.Tensor] = None, | |
mask_input: Optional[torch.Tensor] = None, | |
multimask_output: bool = True, | |
return_logits: bool = False, | |
hq_token_only: bool =False, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Predict masks for the given input prompts, using the currently set image. | |
Input prompts are batched torch tensors and are expected to already be | |
transformed to the input frame using ResizeLongestSide. | |
Arguments: | |
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the | |
model. Each point is in (X,Y) in pixels. | |
point_labels (torch.Tensor or None): A BxN array of labels for the | |
point prompts. 1 indicates a foreground point and 0 indicates a | |
background point. | |
boxes (np.ndarray or None): A Bx4 array given a box prompt to the | |
model, in XYXY format. | |
mask_input (np.ndarray): A low resolution mask input to the model, typically | |
coming from a previous prediction iteration. Has form Bx1xHxW, where | |
for SAM, H=W=256. Masks returned by a previous iteration of the | |
predict method do not need further transformation. | |
multimask_output (bool): If true, the model will return three masks. | |
For ambiguous input prompts (such as a single click), this will often | |
produce better masks than a single prediction. If only a single | |
mask is needed, the model's predicted quality score can be used | |
to select the best mask. For non-ambiguous prompts, such as multiple | |
input prompts, multimask_output=False can give better results. | |
return_logits (bool): If true, returns un-thresholded masks logits | |
instead of a binary mask. | |
Returns: | |
(torch.Tensor): The output masks in BxCxHxW format, where C is the | |
number of masks, and (H, W) is the original image size. | |
(torch.Tensor): An array of shape BxC containing the model's | |
predictions for the quality of each mask. | |
(torch.Tensor): An array of shape BxCxHxW, where C is the number | |
of masks and H=W=256. These low res logits can be passed to | |
a subsequent iteration as mask input. | |
""" | |
if not self.is_image_set: | |
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") | |
if point_coords is not None: | |
points = (point_coords, point_labels) | |
else: | |
points = None | |
# Embed prompts | |
sparse_embeddings, dense_embeddings = self.model.prompt_encoder( | |
points=points, | |
boxes=boxes, | |
masks=mask_input, | |
) | |
# Predict masks | |
low_res_masks, iou_predictions = self.model.mask_decoder( | |
image_embeddings=self.features, | |
image_pe=self.model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=multimask_output, | |
hq_token_only=hq_token_only, | |
interm_embeddings=self.interm_features, | |
) | |
# Upscale the masks to the original image resolution | |
# masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) | |
masks = self.postprocess_masks(low_res_masks, self.input_size, self.original_size) | |
if not return_logits: | |
masks = masks > self.model.mask_threshold | |
return masks, iou_predictions, low_res_masks | |
def get_image_embedding(self) -> torch.Tensor: | |
""" | |
Returns the image embeddings for the currently set image, with | |
shape 1xCxHxW, where C is the embedding dimension and (H,W) are | |
the embedding spatial dimension of SAM (typically C=256, H=W=64). | |
""" | |
if not self.is_image_set: | |
raise RuntimeError( | |
"An image must be set with .set_image(...) to generate an embedding." | |
) | |
assert self.features is not None, "Features must exist if an image has been set." | |
return self.features | |
def device(self) -> torch.device: | |
return self.model.device | |
def reset_image(self) -> None: | |
"""Resets the currently set image.""" | |
self.is_image_set = False | |
self.features = None | |
self.orig_h = None | |
self.orig_w = None | |
self.input_h = None | |
self.input_w = None | |
class SamEncoder: | |
def __init__( | |
self, | |
sam_model: Sam, | |
) -> None: | |
super().__init__() | |
self.image_encoder = sam_model.image_encoder | |
self.transform = ResizeLongestSide(self.image_encoder.img_size) | |
self.image_format = sam_model.image_format | |
self.device = sam_model.device | |
self.pixel_mean = sam_model.pixel_mean | |
self.pixel_std = sam_model.pixel_std | |
if self.image_encoder.__class__.__name__ == 'TinyViT': | |
self.sam_features_dim: int = 256 | |
self.use_mobile_sam = True | |
self.sam_interm_features_num: int = 0 | |
self.sam_interm_features_dim: int = 0 | |
self.sam_features_size: int = 64 | |
else: | |
self.sam_features_dim: int = self.image_encoder.neck[2].out_channels | |
self.use_mobile_sam = False | |
blocks = self.image_encoder.blocks | |
self.sam_interm_features_num: int = len([block for block in blocks if block.window_size == 0]) | |
self.sam_interm_features_dim: int = blocks[0].mlp.lin2.out_features | |
self.sam_features_size: int = self.image_encoder.img_size // self.image_encoder.patch_embed.proj.kernel_size[0] | |
del sam_model | |
self.reset_image() | |
def set_image( | |
self, | |
image: np.ndarray, | |
image_format: str = "RGB", | |
) -> None: | |
assert image_format in [ | |
"RGB", | |
"BGR", | |
], f"image_format must be in ['RGB', 'BGR'], is {image_format}." | |
# import pdb;pdb.set_trace() | |
if image_format != self.image_format: | |
image = image[..., ::-1] | |
# Transform the image to the form expected by the model | |
# import pdb;pdb.set_trace() | |
input_image = self.transform.apply_image(image) | |
input_image_torch = torch.as_tensor(input_image, device=self.device) | |
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] | |
self.set_torch_image(input_image_torch, image.shape[:2]) | |
def set_torch_image( | |
self, | |
transformed_image: torch.Tensor, | |
original_image_size: Tuple[int, ...], | |
) -> None: | |
assert ( | |
len(transformed_image.shape) == 4 | |
and transformed_image.shape[1] == 3 | |
and max(*transformed_image.shape[2:]) == self.image_encoder.img_size | |
), f"set_torch_image input must be BCHW with long side {self.image_encoder.img_size}." | |
self.reset_image() | |
self.original_size = original_image_size | |
self.input_size = tuple(transformed_image.shape[-2:]) | |
input_image = preprocess(self.image_encoder.img_size, self.pixel_mean, self.pixel_std, transformed_image) | |
self.features, self.interm_features = self.image_encoder(input_image), None if self.use_mobile_sam else self.image_encoder(input_image) | |
self.is_image_set = True | |
def reset_image(self) -> None: | |
"""Resets the currently set image.""" | |
self.is_image_set = False | |
self.features = None | |
self.orig_h = None | |
self.orig_w = None | |
self.input_h = None | |
self.input_w = None | |
class SamDecoder: | |
def __init__( | |
self, | |
sam_model: Sam, | |
) -> None: | |
super().__init__() | |
self.prompt_encoder = sam_model.prompt_encoder | |
self.mask_decoder = sam_model.mask_decoder | |
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) | |
self.img_size = sam_model.image_encoder.img_size | |
self.device = sam_model.device | |
self.mask_threshold = sam_model.mask_threshold | |
del sam_model | |
self.reset_features() | |
# def set_features(self, features, interm_features, original_size): | |
# self.original_size = original_size | |
# self.input_size = self.transform.get_preprocess_shape(self.original_size[0], self.original_size[1], self.img_size) | |
# self.features = features | |
# self.interm_features = interm_features | |
# self.is_features_set = True | |
def set_features(self, features, original_size): | |
self.original_size = original_size | |
self.input_size = self.transform.get_preprocess_shape(self.original_size[0], self.original_size[1], self.img_size) | |
self.features = features | |
self.is_features_set = True | |
def reset_features(self): | |
self.original_size = None | |
self.features = None | |
self.is_features_set = False | |
def predict( | |
self, | |
point_coords: Optional[np.ndarray] = None, | |
point_labels: Optional[np.ndarray] = None, | |
box: Optional[np.ndarray] = None, | |
mask_input: Optional[np.ndarray] = None, | |
multimask_output: bool = True, | |
return_logits: bool = False, | |
hq_token_only: bool =False, | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
if not self.is_features_set: | |
raise RuntimeError("features must be set with .set_features(...) before mask prediction.") | |
# Transform input prompts | |
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None | |
if point_coords is not None: | |
assert ( | |
point_labels is not None | |
), "point_labels must be supplied if point_coords is supplied." | |
point_coords = self.transform.apply_coords(point_coords, self.original_size) | |
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) | |
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) | |
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] | |
if box is not None: | |
box = self.transform.apply_boxes(box, self.original_size) | |
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) | |
box_torch = box_torch[None, :] | |
if mask_input is not None: | |
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) | |
mask_input_torch = mask_input_torch[None, :, :, :] | |
masks, iou_predictions, low_res_masks = self.predict_torch( | |
coords_torch, | |
labels_torch, | |
box_torch, | |
mask_input_torch, | |
multimask_output, | |
return_logits=return_logits, | |
hq_token_only=hq_token_only, | |
) | |
masks_np = masks[0].detach().cpu().numpy() | |
iou_predictions_np = iou_predictions[0].detach().cpu().numpy() | |
low_res_masks_np = low_res_masks[0].detach().cpu().numpy() | |
return masks_np, iou_predictions_np, low_res_masks_np | |
def predict_torch( | |
self, | |
point_coords: Optional[torch.Tensor], | |
point_labels: Optional[torch.Tensor], | |
boxes: Optional[torch.Tensor] = None, | |
mask_input: Optional[torch.Tensor] = None, | |
multimask_output: bool = True, | |
return_logits: bool = False, | |
hq_token_only: bool =False, | |
interm_embeddings: torch.Tensor = None | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
if not self.is_features_set: | |
raise RuntimeError("features must be set with .set_features(...) before mask prediction.") | |
if point_coords is not None: | |
points = (point_coords, point_labels) | |
else: | |
points = None | |
# Embed prompts | |
sparse_embeddings, dense_embeddings = self.prompt_encoder( | |
points=points, | |
boxes=boxes, | |
masks=mask_input, | |
) | |
# Predict masks | |
low_res_masks, iou_predictions = self.mask_decoder( | |
image_embeddings=self.features, | |
image_pe=self.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=multimask_output, | |
hq_token_only=hq_token_only, | |
interm_embeddings=interm_embeddings | |
) | |
# Upscale the masks to the original image resolution | |
masks = postprocess_masks(self.img_size, low_res_masks, self.input_size, self.original_size) | |
if not return_logits: | |
masks = masks > self.mask_threshold | |
return masks, iou_predictions, low_res_masks | |
# Prompting SAM with detected boxes | |
def segment(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray: | |
sam_predictor.set_image(image) | |
result_masks = [] | |
for box in xyxy: | |
masks, scores, logits = sam_predictor.predict( | |
box=box, | |
multimask_output=True | |
) | |
index = np.argmax(scores) | |
result_masks.append(masks[index]) | |
return np.array(result_masks) | |
# def sam_decode(sam_decoder: SamDecoder, features: torch.Tensor, interm_features: list, original_size: tuple, xyxy: np.ndarray) -> np.ndarray: | |
# sam_decoder.set_features(features, interm_features, original_size) | |
# result_masks = [] | |
# for box in xyxy: | |
# masks, scores, logits = sam_decoder.predict( | |
# box=box, | |
# multimask_output=True | |
# ) | |
# index = np.argmax(scores) | |
# result_masks.append(masks[index]) | |
# return np.array(result_masks) | |
def sam_decode(sam_decoder: SamDecoder, features: torch.Tensor, original_size: tuple, xyxy: np.ndarray) -> np.ndarray: | |
sam_decoder.set_features(features, original_size) | |
result_masks = [] | |
for box in xyxy: | |
masks, scores, logits = sam_decoder.predict( | |
box=box, | |
multimask_output=True | |
) | |
index = np.argmax(scores) | |
result_masks.append(masks[index]) | |
return np.array(result_masks) |