Spaces:
Build error
Build error
Upload geometry.py
Browse files- lib/pymaf/utils/geometry.py +452 -0
lib/pymaf/utils/geometry.py
ADDED
|
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
"""
|
| 5 |
+
Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula
|
| 6 |
+
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def batch_rodrigues(theta):
|
| 11 |
+
"""Convert axis-angle representation to rotation matrix.
|
| 12 |
+
Args:
|
| 13 |
+
theta: size = [B, 3]
|
| 14 |
+
Returns:
|
| 15 |
+
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
|
| 16 |
+
"""
|
| 17 |
+
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
|
| 18 |
+
angle = torch.unsqueeze(l1norm, -1)
|
| 19 |
+
normalized = torch.div(theta, angle)
|
| 20 |
+
angle = angle * 0.5
|
| 21 |
+
v_cos = torch.cos(angle)
|
| 22 |
+
v_sin = torch.sin(angle)
|
| 23 |
+
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
|
| 24 |
+
return quat_to_rotmat(quat)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def quat_to_rotmat(quat):
|
| 28 |
+
"""Convert quaternion coefficients to rotation matrix.
|
| 29 |
+
Args:
|
| 30 |
+
quat: size = [B, 4] 4 <===>(w, x, y, z)
|
| 31 |
+
Returns:
|
| 32 |
+
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
|
| 33 |
+
"""
|
| 34 |
+
norm_quat = quat
|
| 35 |
+
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
|
| 36 |
+
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
|
| 37 |
+
2], norm_quat[:,
|
| 38 |
+
3]
|
| 39 |
+
|
| 40 |
+
B = quat.size(0)
|
| 41 |
+
|
| 42 |
+
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
|
| 43 |
+
wx, wy, wz = w * x, w * y, w * z
|
| 44 |
+
xy, xz, yz = x * y, x * z, y * z
|
| 45 |
+
|
| 46 |
+
rotMat = torch.stack([
|
| 47 |
+
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
|
| 48 |
+
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
|
| 49 |
+
w2 - x2 - y2 + z2
|
| 50 |
+
],
|
| 51 |
+
dim=1).view(B, 3, 3)
|
| 52 |
+
return rotMat
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def rotation_matrix_to_angle_axis(rotation_matrix):
|
| 56 |
+
"""
|
| 57 |
+
This function is borrowed from https://github.com/kornia/kornia
|
| 58 |
+
|
| 59 |
+
Convert 3x4 rotation matrix to Rodrigues vector
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
rotation_matrix (Tensor): rotation matrix.
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
Tensor: Rodrigues vector transformation.
|
| 66 |
+
|
| 67 |
+
Shape:
|
| 68 |
+
- Input: :math:`(N, 3, 4)`
|
| 69 |
+
- Output: :math:`(N, 3)`
|
| 70 |
+
|
| 71 |
+
Example:
|
| 72 |
+
>>> input = torch.rand(2, 3, 4) # Nx4x4
|
| 73 |
+
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
|
| 74 |
+
"""
|
| 75 |
+
if rotation_matrix.shape[1:] == (3, 3):
|
| 76 |
+
rot_mat = rotation_matrix.reshape(-1, 3, 3)
|
| 77 |
+
hom = torch.tensor([0, 0, 1],
|
| 78 |
+
dtype=torch.float32,
|
| 79 |
+
device=rotation_matrix.device).reshape(
|
| 80 |
+
1, 3, 1).expand(rot_mat.shape[0], -1, -1)
|
| 81 |
+
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
|
| 82 |
+
|
| 83 |
+
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
|
| 84 |
+
aa = quaternion_to_angle_axis(quaternion)
|
| 85 |
+
aa[torch.isnan(aa)] = 0.0
|
| 86 |
+
return aa
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
|
| 90 |
+
"""
|
| 91 |
+
This function is borrowed from https://github.com/kornia/kornia
|
| 92 |
+
|
| 93 |
+
Convert quaternion vector to angle axis of rotation.
|
| 94 |
+
|
| 95 |
+
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
quaternion (torch.Tensor): tensor with quaternions.
|
| 99 |
+
|
| 100 |
+
Return:
|
| 101 |
+
torch.Tensor: tensor with angle axis of rotation.
|
| 102 |
+
|
| 103 |
+
Shape:
|
| 104 |
+
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
|
| 105 |
+
- Output: :math:`(*, 3)`
|
| 106 |
+
|
| 107 |
+
Example:
|
| 108 |
+
>>> quaternion = torch.rand(2, 4) # Nx4
|
| 109 |
+
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
|
| 110 |
+
"""
|
| 111 |
+
if not torch.is_tensor(quaternion):
|
| 112 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
|
| 113 |
+
type(quaternion)))
|
| 114 |
+
|
| 115 |
+
if not quaternion.shape[-1] == 4:
|
| 116 |
+
raise ValueError(
|
| 117 |
+
"Input must be a tensor of shape Nx4 or 4. Got {}".format(
|
| 118 |
+
quaternion.shape))
|
| 119 |
+
# unpack input and compute conversion
|
| 120 |
+
q1: torch.Tensor = quaternion[..., 1]
|
| 121 |
+
q2: torch.Tensor = quaternion[..., 2]
|
| 122 |
+
q3: torch.Tensor = quaternion[..., 3]
|
| 123 |
+
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
|
| 124 |
+
|
| 125 |
+
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
|
| 126 |
+
cos_theta: torch.Tensor = quaternion[..., 0]
|
| 127 |
+
two_theta: torch.Tensor = 2.0 * torch.where(
|
| 128 |
+
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
|
| 129 |
+
torch.atan2(sin_theta, cos_theta))
|
| 130 |
+
|
| 131 |
+
k_pos: torch.Tensor = two_theta / sin_theta
|
| 132 |
+
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
|
| 133 |
+
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
|
| 134 |
+
|
| 135 |
+
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
|
| 136 |
+
angle_axis[..., 0] += q1 * k
|
| 137 |
+
angle_axis[..., 1] += q2 * k
|
| 138 |
+
angle_axis[..., 2] += q3 * k
|
| 139 |
+
return angle_axis
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
|
| 143 |
+
"""
|
| 144 |
+
This function is borrowed from https://github.com/kornia/kornia
|
| 145 |
+
|
| 146 |
+
Convert 3x4 rotation matrix to 4d quaternion vector
|
| 147 |
+
|
| 148 |
+
This algorithm is based on algorithm described in
|
| 149 |
+
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
rotation_matrix (Tensor): the rotation matrix to convert.
|
| 153 |
+
|
| 154 |
+
Return:
|
| 155 |
+
Tensor: the rotation in quaternion
|
| 156 |
+
|
| 157 |
+
Shape:
|
| 158 |
+
- Input: :math:`(N, 3, 4)`
|
| 159 |
+
- Output: :math:`(N, 4)`
|
| 160 |
+
|
| 161 |
+
Example:
|
| 162 |
+
>>> input = torch.rand(4, 3, 4) # Nx3x4
|
| 163 |
+
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
|
| 164 |
+
"""
|
| 165 |
+
if not torch.is_tensor(rotation_matrix):
|
| 166 |
+
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
|
| 167 |
+
type(rotation_matrix)))
|
| 168 |
+
|
| 169 |
+
if len(rotation_matrix.shape) > 3:
|
| 170 |
+
raise ValueError(
|
| 171 |
+
"Input size must be a three dimensional tensor. Got {}".format(
|
| 172 |
+
rotation_matrix.shape))
|
| 173 |
+
if not rotation_matrix.shape[-2:] == (3, 4):
|
| 174 |
+
raise ValueError(
|
| 175 |
+
"Input size must be a N x 3 x 4 tensor. Got {}".format(
|
| 176 |
+
rotation_matrix.shape))
|
| 177 |
+
|
| 178 |
+
rmat_t = torch.transpose(rotation_matrix, 1, 2)
|
| 179 |
+
|
| 180 |
+
mask_d2 = rmat_t[:, 2, 2] < eps
|
| 181 |
+
|
| 182 |
+
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
|
| 183 |
+
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
|
| 184 |
+
|
| 185 |
+
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
|
| 186 |
+
q0 = torch.stack([
|
| 187 |
+
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0,
|
| 188 |
+
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
|
| 189 |
+
], -1)
|
| 190 |
+
t0_rep = t0.repeat(4, 1).t()
|
| 191 |
+
|
| 192 |
+
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
|
| 193 |
+
q1 = torch.stack([
|
| 194 |
+
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
|
| 195 |
+
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
|
| 196 |
+
], -1)
|
| 197 |
+
t1_rep = t1.repeat(4, 1).t()
|
| 198 |
+
|
| 199 |
+
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
|
| 200 |
+
q2 = torch.stack([
|
| 201 |
+
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
|
| 202 |
+
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
|
| 203 |
+
], -1)
|
| 204 |
+
t2_rep = t2.repeat(4, 1).t()
|
| 205 |
+
|
| 206 |
+
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
|
| 207 |
+
q3 = torch.stack([
|
| 208 |
+
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
|
| 209 |
+
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
|
| 210 |
+
], -1)
|
| 211 |
+
t3_rep = t3.repeat(4, 1).t()
|
| 212 |
+
|
| 213 |
+
mask_c0 = mask_d2 * mask_d0_d1
|
| 214 |
+
mask_c1 = mask_d2 * ~mask_d0_d1
|
| 215 |
+
mask_c2 = ~mask_d2 * mask_d0_nd1
|
| 216 |
+
mask_c3 = ~mask_d2 * ~mask_d0_nd1
|
| 217 |
+
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
|
| 218 |
+
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
|
| 219 |
+
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
|
| 220 |
+
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
|
| 221 |
+
|
| 222 |
+
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
|
| 223 |
+
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
|
| 224 |
+
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
|
| 225 |
+
q *= 0.5
|
| 226 |
+
return q
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def rot6d_to_rotmat(x):
|
| 230 |
+
"""Convert 6D rotation representation to 3x3 rotation matrix.
|
| 231 |
+
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
|
| 232 |
+
Input:
|
| 233 |
+
(B,6) Batch of 6-D rotation representations
|
| 234 |
+
Output:
|
| 235 |
+
(B,3,3) Batch of corresponding rotation matrices
|
| 236 |
+
"""
|
| 237 |
+
x = x.view(-1, 3, 2)
|
| 238 |
+
a1 = x[:, :, 0]
|
| 239 |
+
a2 = x[:, :, 1]
|
| 240 |
+
b1 = F.normalize(a1)
|
| 241 |
+
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
|
| 242 |
+
b3 = torch.cross(b1, b2)
|
| 243 |
+
return torch.stack((b1, b2, b3), dim=-1)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def projection(pred_joints, pred_camera, retain_z=False):
|
| 247 |
+
pred_cam_t = torch.stack([
|
| 248 |
+
pred_camera[:, 1], pred_camera[:, 2], 2 * 5000. /
|
| 249 |
+
(224. * pred_camera[:, 0] + 1e-9)
|
| 250 |
+
],
|
| 251 |
+
dim=-1)
|
| 252 |
+
batch_size = pred_joints.shape[0]
|
| 253 |
+
camera_center = torch.zeros(batch_size, 2)
|
| 254 |
+
pred_keypoints_2d = perspective_projection(
|
| 255 |
+
pred_joints,
|
| 256 |
+
rotation=torch.eye(3).unsqueeze(0).expand(batch_size, -1,
|
| 257 |
+
-1).to(pred_joints.device),
|
| 258 |
+
translation=pred_cam_t,
|
| 259 |
+
focal_length=5000.,
|
| 260 |
+
camera_center=camera_center,
|
| 261 |
+
retain_z=retain_z)
|
| 262 |
+
# Normalize keypoints to [-1,1]
|
| 263 |
+
pred_keypoints_2d = pred_keypoints_2d / (224. / 2.)
|
| 264 |
+
return pred_keypoints_2d
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def perspective_projection(points,
|
| 268 |
+
rotation,
|
| 269 |
+
translation,
|
| 270 |
+
focal_length,
|
| 271 |
+
camera_center,
|
| 272 |
+
retain_z=False):
|
| 273 |
+
"""
|
| 274 |
+
This function computes the perspective projection of a set of points.
|
| 275 |
+
Input:
|
| 276 |
+
points (bs, N, 3): 3D points
|
| 277 |
+
rotation (bs, 3, 3): Camera rotation
|
| 278 |
+
translation (bs, 3): Camera translation
|
| 279 |
+
focal_length (bs,) or scalar: Focal length
|
| 280 |
+
camera_center (bs, 2): Camera center
|
| 281 |
+
"""
|
| 282 |
+
batch_size = points.shape[0]
|
| 283 |
+
K = torch.zeros([batch_size, 3, 3], device=points.device)
|
| 284 |
+
K[:, 0, 0] = focal_length
|
| 285 |
+
K[:, 1, 1] = focal_length
|
| 286 |
+
K[:, 2, 2] = 1.
|
| 287 |
+
K[:, :-1, -1] = camera_center
|
| 288 |
+
|
| 289 |
+
# Transform points
|
| 290 |
+
points = torch.einsum('bij,bkj->bki', rotation, points)
|
| 291 |
+
points = points + translation.unsqueeze(1)
|
| 292 |
+
|
| 293 |
+
# Apply perspective distortion
|
| 294 |
+
projected_points = points / points[:, :, -1].unsqueeze(-1)
|
| 295 |
+
|
| 296 |
+
# Apply camera intrinsics
|
| 297 |
+
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
|
| 298 |
+
|
| 299 |
+
if retain_z:
|
| 300 |
+
return projected_points
|
| 301 |
+
else:
|
| 302 |
+
return projected_points[:, :, :-1]
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
def estimate_translation_np(S,
|
| 306 |
+
joints_2d,
|
| 307 |
+
joints_conf,
|
| 308 |
+
focal_length=5000,
|
| 309 |
+
img_size=224):
|
| 310 |
+
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
|
| 311 |
+
Input:
|
| 312 |
+
S: (25, 3) 3D joint locations
|
| 313 |
+
joints: (25, 3) 2D joint locations and confidence
|
| 314 |
+
Returns:
|
| 315 |
+
(3,) camera translation vector
|
| 316 |
+
"""
|
| 317 |
+
|
| 318 |
+
num_joints = S.shape[0]
|
| 319 |
+
# focal length
|
| 320 |
+
f = np.array([focal_length, focal_length])
|
| 321 |
+
# optical center
|
| 322 |
+
center = np.array([img_size / 2., img_size / 2.])
|
| 323 |
+
|
| 324 |
+
# transformations
|
| 325 |
+
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1)
|
| 326 |
+
XY = np.reshape(S[:, 0:2], -1)
|
| 327 |
+
O = np.tile(center, num_joints)
|
| 328 |
+
F = np.tile(f, num_joints)
|
| 329 |
+
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
|
| 330 |
+
|
| 331 |
+
# least squares
|
| 332 |
+
Q = np.array([
|
| 333 |
+
F * np.tile(np.array([1, 0]), num_joints),
|
| 334 |
+
F * np.tile(np.array([0, 1]), num_joints),
|
| 335 |
+
O - np.reshape(joints_2d, -1)
|
| 336 |
+
]).T
|
| 337 |
+
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
|
| 338 |
+
|
| 339 |
+
# weighted least squares
|
| 340 |
+
W = np.diagflat(weight2)
|
| 341 |
+
Q = np.dot(W, Q)
|
| 342 |
+
c = np.dot(W, c)
|
| 343 |
+
|
| 344 |
+
# square matrix
|
| 345 |
+
A = np.dot(Q.T, Q)
|
| 346 |
+
b = np.dot(Q.T, c)
|
| 347 |
+
|
| 348 |
+
# solution
|
| 349 |
+
trans = np.linalg.solve(A, b)
|
| 350 |
+
|
| 351 |
+
return trans
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.):
|
| 355 |
+
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
|
| 356 |
+
Input:
|
| 357 |
+
S: (B, 49, 3) 3D joint locations
|
| 358 |
+
joints: (B, 49, 3) 2D joint locations and confidence
|
| 359 |
+
Returns:
|
| 360 |
+
(B, 3) camera translation vectors
|
| 361 |
+
"""
|
| 362 |
+
|
| 363 |
+
device = S.device
|
| 364 |
+
# Use only joints 25:49 (GT joints)
|
| 365 |
+
S = S[:, 25:, :].cpu().numpy()
|
| 366 |
+
joints_2d = joints_2d[:, 25:, :].cpu().numpy()
|
| 367 |
+
joints_conf = joints_2d[:, :, -1]
|
| 368 |
+
joints_2d = joints_2d[:, :, :-1]
|
| 369 |
+
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
|
| 370 |
+
# Find the translation for each example in the batch
|
| 371 |
+
for i in range(S.shape[0]):
|
| 372 |
+
S_i = S[i]
|
| 373 |
+
joints_i = joints_2d[i]
|
| 374 |
+
conf_i = joints_conf[i]
|
| 375 |
+
trans[i] = estimate_translation_np(S_i,
|
| 376 |
+
joints_i,
|
| 377 |
+
conf_i,
|
| 378 |
+
focal_length=focal_length,
|
| 379 |
+
img_size=img_size)
|
| 380 |
+
return torch.from_numpy(trans).to(device)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def Rot_y(angle, category='torch', prepend_dim=True, device=None):
|
| 384 |
+
'''Rotate around y-axis by angle
|
| 385 |
+
Args:
|
| 386 |
+
category: 'torch' or 'numpy'
|
| 387 |
+
prepend_dim: prepend an extra dimension
|
| 388 |
+
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
|
| 389 |
+
'''
|
| 390 |
+
m = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.],
|
| 391 |
+
[-np.sin(angle), 0., np.cos(angle)]])
|
| 392 |
+
if category == 'torch':
|
| 393 |
+
if prepend_dim:
|
| 394 |
+
return torch.tensor(m, dtype=torch.float,
|
| 395 |
+
device=device).unsqueeze(0)
|
| 396 |
+
else:
|
| 397 |
+
return torch.tensor(m, dtype=torch.float, device=device)
|
| 398 |
+
elif category == 'numpy':
|
| 399 |
+
if prepend_dim:
|
| 400 |
+
return np.expand_dims(m, 0)
|
| 401 |
+
else:
|
| 402 |
+
return m
|
| 403 |
+
else:
|
| 404 |
+
raise ValueError("category must be 'torch' or 'numpy'")
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
def Rot_x(angle, category='torch', prepend_dim=True, device=None):
|
| 408 |
+
'''Rotate around x-axis by angle
|
| 409 |
+
Args:
|
| 410 |
+
category: 'torch' or 'numpy'
|
| 411 |
+
prepend_dim: prepend an extra dimension
|
| 412 |
+
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
|
| 413 |
+
'''
|
| 414 |
+
m = np.array([[1., 0., 0.], [0., np.cos(angle), -np.sin(angle)],
|
| 415 |
+
[0., np.sin(angle), np.cos(angle)]])
|
| 416 |
+
if category == 'torch':
|
| 417 |
+
if prepend_dim:
|
| 418 |
+
return torch.tensor(m, dtype=torch.float,
|
| 419 |
+
device=device).unsqueeze(0)
|
| 420 |
+
else:
|
| 421 |
+
return torch.tensor(m, dtype=torch.float, device=device)
|
| 422 |
+
elif category == 'numpy':
|
| 423 |
+
if prepend_dim:
|
| 424 |
+
return np.expand_dims(m, 0)
|
| 425 |
+
else:
|
| 426 |
+
return m
|
| 427 |
+
else:
|
| 428 |
+
raise ValueError("category must be 'torch' or 'numpy'")
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def Rot_z(angle, category='torch', prepend_dim=True, device=None):
|
| 432 |
+
'''Rotate around z-axis by angle
|
| 433 |
+
Args:
|
| 434 |
+
category: 'torch' or 'numpy'
|
| 435 |
+
prepend_dim: prepend an extra dimension
|
| 436 |
+
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
|
| 437 |
+
'''
|
| 438 |
+
m = np.array([[np.cos(angle), -np.sin(angle), 0.],
|
| 439 |
+
[np.sin(angle), np.cos(angle), 0.], [0., 0., 1.]])
|
| 440 |
+
if category == 'torch':
|
| 441 |
+
if prepend_dim:
|
| 442 |
+
return torch.tensor(m, dtype=torch.float,
|
| 443 |
+
device=device).unsqueeze(0)
|
| 444 |
+
else:
|
| 445 |
+
return torch.tensor(m, dtype=torch.float, device=device)
|
| 446 |
+
elif category == 'numpy':
|
| 447 |
+
if prepend_dim:
|
| 448 |
+
return np.expand_dims(m, 0)
|
| 449 |
+
else:
|
| 450 |
+
return m
|
| 451 |
+
else:
|
| 452 |
+
raise ValueError("category must be 'torch' or 'numpy'")
|