Spaces:
Build error
Build error
Update apps/ICON.py
Browse files- apps/ICON.py +246 -216
apps/ICON.py
CHANGED
|
@@ -14,24 +14,35 @@
|
|
| 14 |
#
|
| 15 |
# Contact: [email protected]
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
from lib.common.seg3d_lossless import Seg3dLossless
|
| 18 |
from lib.dataset.Evaluator import Evaluator
|
| 19 |
from lib.net import HGPIFuNet
|
| 20 |
from lib.common.train_util import *
|
| 21 |
from lib.common.render import Render
|
| 22 |
from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility
|
|
|
|
|
|
|
| 23 |
import torch
|
| 24 |
import lib.smplx as smplx
|
| 25 |
import numpy as np
|
| 26 |
from torch import nn
|
|
|
|
|
|
|
| 27 |
from skimage.transform import resize
|
| 28 |
import pytorch_lightning as pl
|
|
|
|
| 29 |
|
| 30 |
torch.backends.cudnn.benchmark = True
|
| 31 |
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
|
|
|
|
|
|
|
| 35 |
def __init__(self, cfg):
|
| 36 |
super(ICON, self).__init__()
|
| 37 |
|
|
@@ -50,31 +61,25 @@ class ICON(pl.LightningModule):
|
|
| 50 |
error_term=nn.SmoothL1Loss() if self.use_sdf else nn.MSELoss(),
|
| 51 |
)
|
| 52 |
|
|
|
|
| 53 |
self.evaluator = Evaluator(
|
| 54 |
device=torch.device(f"cuda:{self.cfg.gpus[0]}"))
|
| 55 |
|
| 56 |
-
self.resolutions = (
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
self.resolutions = self.resolutions.astype(np.int16).tolist()
|
| 64 |
|
| 65 |
-
self.
|
| 66 |
-
self.
|
| 67 |
-
|
| 68 |
-
self.icon_keys = self.base_keys + [
|
| 69 |
-
f"smpl_{feat_name}" for feat_name in self.feat_names
|
| 70 |
-
]
|
| 71 |
-
self.keypoint_keys = self.base_keys + [
|
| 72 |
-
f"smpl_{feat_name}" for feat_name in self.feat_names
|
| 73 |
-
]
|
| 74 |
-
self.pamir_keys = [
|
| 75 |
-
"voxel_verts", "voxel_faces", "pad_v_num", "pad_f_num"
|
| 76 |
-
]
|
| 77 |
-
self.pifu_keys = []
|
| 78 |
|
| 79 |
self.reconEngine = Seg3dLossless(
|
| 80 |
query_func=query_func,
|
|
@@ -91,15 +96,14 @@ class ICON(pl.LightningModule):
|
|
| 91 |
)
|
| 92 |
|
| 93 |
self.render = Render(
|
| 94 |
-
size=512, device=torch.device(f"cuda:{self.cfg.test_gpus[0]}")
|
|
|
|
| 95 |
self.smpl_data = SMPLX()
|
| 96 |
|
| 97 |
self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create(
|
| 98 |
self.smpl_data.model_dir,
|
| 99 |
-
kid_template_path=osp.join(
|
| 100 |
-
|
| 101 |
-
f"{smpl_type}/{smpl_type}_kid_template.npy",
|
| 102 |
-
),
|
| 103 |
model_type=smpl_type,
|
| 104 |
gender=gender,
|
| 105 |
age=age,
|
|
@@ -130,34 +134,31 @@ class ICON(pl.LightningModule):
|
|
| 130 |
weight_decay = self.cfg.weight_decay
|
| 131 |
momentum = self.cfg.momentum
|
| 132 |
|
| 133 |
-
optim_params_G = [
|
| 134 |
-
"params": self.netG.if_regressor.parameters(),
|
| 135 |
-
|
| 136 |
-
}]
|
| 137 |
|
| 138 |
if self.cfg.net.use_filter:
|
| 139 |
-
optim_params_G.append(
|
| 140 |
-
"params": self.netG.F_filter.parameters(),
|
| 141 |
-
|
| 142 |
-
})
|
| 143 |
|
| 144 |
if self.cfg.net.prior_type == "pamir":
|
| 145 |
-
optim_params_G.append(
|
| 146 |
-
"params": self.netG.ve.parameters(),
|
| 147 |
-
|
| 148 |
-
})
|
| 149 |
|
| 150 |
if self.cfg.optim == "Adadelta":
|
| 151 |
|
| 152 |
-
optimizer_G = torch.optim.Adadelta(
|
| 153 |
-
|
| 154 |
-
|
| 155 |
|
| 156 |
elif self.cfg.optim == "Adam":
|
| 157 |
|
| 158 |
-
optimizer_G = torch.optim.Adam(
|
| 159 |
-
|
| 160 |
-
|
| 161 |
|
| 162 |
elif self.cfg.optim == "RMSprop":
|
| 163 |
|
|
@@ -173,7 +174,8 @@ class ICON(pl.LightningModule):
|
|
| 173 |
|
| 174 |
# set scheduler
|
| 175 |
scheduler_G = torch.optim.lr_scheduler.MultiStepLR(
|
| 176 |
-
optimizer_G, milestones=self.cfg.schedule, gamma=self.cfg.gamma
|
|
|
|
| 177 |
|
| 178 |
return [optimizer_G], [scheduler_G]
|
| 179 |
|
|
@@ -193,10 +195,14 @@ class ICON(pl.LightningModule):
|
|
| 193 |
for name in self.in_total:
|
| 194 |
in_tensor_dict.update({name: batch[name]})
|
| 195 |
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
preds_G, error_G = self.netG(in_tensor_dict)
|
| 202 |
|
|
@@ -225,15 +231,11 @@ class ICON(pl.LightningModule):
|
|
| 225 |
self.render_func(in_tensor_dict, dataset="train")
|
| 226 |
|
| 227 |
metrics_return = {
|
| 228 |
-
k.replace("train_", ""): torch.tensor(v)
|
| 229 |
-
for k, v in metrics_log.items()
|
| 230 |
}
|
| 231 |
|
| 232 |
-
metrics_return.update(
|
| 233 |
-
"loss": error_G,
|
| 234 |
-
"log": tf_log,
|
| 235 |
-
"progress_bar": bar_log
|
| 236 |
-
})
|
| 237 |
|
| 238 |
return metrics_return
|
| 239 |
|
|
@@ -269,11 +271,15 @@ class ICON(pl.LightningModule):
|
|
| 269 |
for name in self.in_total:
|
| 270 |
in_tensor_dict.update({name: batch[name]})
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
preds_G, error_G = self.netG(in_tensor_dict)
|
| 278 |
|
| 279 |
acc, iou, prec, recall = self.evaluator.calc_acc(
|
|
@@ -316,7 +322,11 @@ class ICON(pl.LightningModule):
|
|
| 316 |
|
| 317 |
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1)
|
| 318 |
smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long())
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
return {
|
| 322 |
"smpl_vis": smpl_vis.unsqueeze(0).to(self.device),
|
|
@@ -327,25 +337,29 @@ class ICON(pl.LightningModule):
|
|
| 327 |
@torch.enable_grad()
|
| 328 |
def optim_body(self, in_tensor_dict, batch):
|
| 329 |
|
| 330 |
-
smpl_model = self.get_smpl_model(
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
# The optimizer and variables
|
| 337 |
-
optimed_pose = torch.tensor(
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
optimed_trans = torch.tensor(
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
optimed_betas = torch.tensor(
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
optimed_orient = torch.tensor(
|
| 347 |
-
|
| 348 |
-
|
| 349 |
|
| 350 |
optimizer_smpl = torch.optim.SGD(
|
| 351 |
[optimed_pose, optimed_trans, optimed_betas, optimed_orient],
|
|
@@ -353,12 +367,8 @@ class ICON(pl.LightningModule):
|
|
| 353 |
momentum=0.9,
|
| 354 |
)
|
| 355 |
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
| 356 |
-
optimizer_smpl,
|
| 357 |
-
|
| 358 |
-
factor=0.5,
|
| 359 |
-
verbose=0,
|
| 360 |
-
min_lr=1e-5,
|
| 361 |
-
patience=5)
|
| 362 |
loop_smpl = range(50)
|
| 363 |
for i in loop_smpl:
|
| 364 |
|
|
@@ -374,12 +384,12 @@ class ICON(pl.LightningModule):
|
|
| 374 |
)
|
| 375 |
|
| 376 |
smpl_verts = smpl_out.vertices[0] * 100.0
|
| 377 |
-
smpl_verts = projection(
|
| 378 |
-
|
| 379 |
-
format="tensor")
|
| 380 |
smpl_verts[:, 1] *= -1
|
| 381 |
# render optimized mesh (normal, T_normal, image [-1,1])
|
| 382 |
-
self.render.load_meshes(
|
|
|
|
| 383 |
(
|
| 384 |
in_tensor_dict["T_normal_F"],
|
| 385 |
in_tensor_dict["T_normal_B"],
|
|
@@ -394,20 +404,24 @@ class ICON(pl.LightningModule):
|
|
| 394 |
) = self.netG.normal_filter(in_tensor_dict)
|
| 395 |
|
| 396 |
# mask = torch.abs(in_tensor['T_normal_F']).sum(dim=0, keepdims=True) > 0.0
|
| 397 |
-
diff_F_smpl = torch.abs(
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
|
|
|
|
|
|
| 401 |
loss = (diff_F_smpl + diff_B_smpl).mean()
|
| 402 |
|
| 403 |
# silhouette loss
|
| 404 |
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]
|
| 405 |
gt_arr = torch.cat(
|
| 406 |
-
[in_tensor_dict["normal_F"][0], in_tensor_dict["normal_B"][0]],
|
| 407 |
-
|
| 408 |
gt_arr = ((gt_arr + 1.0) * 0.5).to(self.device)
|
| 409 |
-
bg_color = (
|
| 410 |
-
[0.5, 0.5, 0.5]).unsqueeze(
|
|
|
|
|
|
|
| 411 |
gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float()
|
| 412 |
loss += torch.abs(smpl_arr - gt_arr).mean()
|
| 413 |
|
|
@@ -425,7 +439,8 @@ class ICON(pl.LightningModule):
|
|
| 425 |
batch["type"][0],
|
| 426 |
in_tensor_dict["smpl_verts"][0],
|
| 427 |
in_tensor_dict["smpl_faces"][0],
|
| 428 |
-
)
|
|
|
|
| 429 |
|
| 430 |
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
|
| 431 |
|
|
@@ -439,46 +454,22 @@ class ICON(pl.LightningModule):
|
|
| 439 |
verts_pr /= (self.resolutions[-1] - 1) / 2.0
|
| 440 |
|
| 441 |
losses = {
|
| 442 |
-
"cloth": {
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
},
|
| 446 |
-
"
|
| 447 |
-
|
| 448 |
-
"value": 0.0
|
| 449 |
-
},
|
| 450 |
-
"normal": {
|
| 451 |
-
"weight": 0.2,
|
| 452 |
-
"value": 0.0
|
| 453 |
-
},
|
| 454 |
-
"laplacian": {
|
| 455 |
-
"weight": 100.0,
|
| 456 |
-
"value": 0.0
|
| 457 |
-
},
|
| 458 |
-
"smpl": {
|
| 459 |
-
"weight": 1.0,
|
| 460 |
-
"value": 0.0
|
| 461 |
-
},
|
| 462 |
-
"deform": {
|
| 463 |
-
"weight": 20.0,
|
| 464 |
-
"value": 0.0
|
| 465 |
-
},
|
| 466 |
}
|
| 467 |
|
| 468 |
-
deform_verts = torch.full(
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
lr=1e-1,
|
| 474 |
-
momentum=0.9)
|
| 475 |
scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
| 476 |
-
optimizer_cloth,
|
| 477 |
-
|
| 478 |
-
factor=0.1,
|
| 479 |
-
verbose=0,
|
| 480 |
-
min_lr=1e-3,
|
| 481 |
-
patience=5)
|
| 482 |
# cloth optimization
|
| 483 |
loop_cloth = range(100)
|
| 484 |
|
|
@@ -498,7 +489,8 @@ class ICON(pl.LightningModule):
|
|
| 498 |
diff_B_cloth = torch.abs(P_normal_B[0] - inter[3:])
|
| 499 |
losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean()
|
| 500 |
losses["deform"]["value"] = torch.topk(
|
| 501 |
-
torch.abs(deform_verts.flatten()), 30
|
|
|
|
| 502 |
|
| 503 |
# Weighted sum of the losses
|
| 504 |
cloth_loss = torch.tensor(0.0, device=self.device)
|
|
@@ -518,8 +510,8 @@ class ICON(pl.LightningModule):
|
|
| 518 |
|
| 519 |
# convert from GT to SDF
|
| 520 |
deform_verts = deform_verts.flatten().detach()
|
| 521 |
-
deform_verts[torch.topk(torch.abs(deform_verts),
|
| 522 |
-
|
| 523 |
deform_verts = deform_verts.view(-1, 3).cpu()
|
| 524 |
|
| 525 |
verts_pr += deform_verts
|
|
@@ -530,6 +522,15 @@ class ICON(pl.LightningModule):
|
|
| 530 |
|
| 531 |
def test_step(self, batch, batch_idx):
|
| 532 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
self.netG.eval()
|
| 534 |
self.netG.training = False
|
| 535 |
in_tensor_dict = {}
|
|
@@ -537,78 +538,111 @@ class ICON(pl.LightningModule):
|
|
| 537 |
# export paths
|
| 538 |
mesh_name = batch["subject"][0]
|
| 539 |
mesh_rot = batch["rotation"][0].item()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
-
|
| 542 |
-
|
|
|
|
|
|
|
| 543 |
|
|
|
|
| 544 |
os.makedirs(self.export_dir, exist_ok=True)
|
| 545 |
|
| 546 |
for name in self.in_total:
|
| 547 |
if name in batch.keys():
|
| 548 |
in_tensor_dict.update({name: batch[name]})
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
if "T_normal_F" not in in_tensor_dict.keys(
|
| 556 |
-
) or "T_normal_B" not in in_tensor_dict.keys():
|
| 557 |
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
with torch.no_grad():
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
1.0) * 0.5 * 255.0
|
| 580 |
|
| 581 |
# save inter results
|
| 582 |
-
image =
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
|
| 591 |
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf)
|
| 592 |
|
| 593 |
if self.clean_mesh_flag:
|
| 594 |
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr)
|
| 595 |
|
|
|
|
|
|
|
|
|
|
| 596 |
verts_gt = batch["verts"][0]
|
| 597 |
faces_gt = batch["faces"][0]
|
| 598 |
|
| 599 |
-
self.result_eval.update(
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
normal_consist = self.evaluator.calculate_normal_consist(
|
| 611 |
-
osp.join(self.export_dir, f"{mesh_rot}_nc.png")
|
|
|
|
| 612 |
|
| 613 |
test_log = {"chamfer": chamfer, "p2s": p2s, "NC": normal_consist}
|
| 614 |
|
|
@@ -622,8 +656,7 @@ class ICON(pl.LightningModule):
|
|
| 622 |
outputs,
|
| 623 |
rot_num=3,
|
| 624 |
split={
|
| 625 |
-
"
|
| 626 |
-
"cape-hard": (50, 100)
|
| 627 |
},
|
| 628 |
)
|
| 629 |
|
|
@@ -631,10 +664,7 @@ class ICON(pl.LightningModule):
|
|
| 631 |
print(colored(self.cfg.dataset.noise_scale, "green"))
|
| 632 |
|
| 633 |
self.logger.experiment.add_hparams(
|
| 634 |
-
hparam_dict={
|
| 635 |
-
"lr_G": self.lr_G,
|
| 636 |
-
"bsize": self.batch_size
|
| 637 |
-
},
|
| 638 |
metric_dict=accu_outputs,
|
| 639 |
)
|
| 640 |
|
|
@@ -652,8 +682,8 @@ class ICON(pl.LightningModule):
|
|
| 652 |
for dim in self.in_geo_dim:
|
| 653 |
img = resize(
|
| 654 |
np.tile(
|
| 655 |
-
((inter[:dim].cpu().numpy() + 1.0) /
|
| 656 |
-
|
| 657 |
(1, 1, int(3 / dim)),
|
| 658 |
),
|
| 659 |
(height, height),
|
|
@@ -668,15 +698,13 @@ class ICON(pl.LightningModule):
|
|
| 668 |
def render_func(self, in_tensor_dict, dataset="title", idx=0):
|
| 669 |
|
| 670 |
for name in in_tensor_dict.keys():
|
| 671 |
-
|
| 672 |
-
in_tensor_dict[name] = in_tensor_dict[name][0:1]
|
| 673 |
|
| 674 |
self.netG.eval()
|
| 675 |
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
|
| 676 |
-
sdf = self.reconEngine(
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
proj_matrix=None)
|
| 680 |
|
| 681 |
if sdf is not None:
|
| 682 |
render = self.reconEngine.display(sdf)
|
|
@@ -685,14 +713,15 @@ class ICON(pl.LightningModule):
|
|
| 685 |
height = image_pred.shape[0]
|
| 686 |
|
| 687 |
image_gt = resize(
|
| 688 |
-
((in_tensor_dict["image"].cpu().numpy()[0] + 1.0) / 2.0
|
| 689 |
-
|
|
|
|
| 690 |
(height, height),
|
| 691 |
anti_aliasing=True,
|
| 692 |
)
|
| 693 |
image_inter = self.tensor2image(height, inter[0])
|
| 694 |
-
image = np.concatenate(
|
| 695 |
-
|
| 696 |
|
| 697 |
step_id = self.global_step if dataset == "train" else self.global_step + idx
|
| 698 |
self.logger.experiment.add_image(
|
|
@@ -711,18 +740,19 @@ class ICON(pl.LightningModule):
|
|
| 711 |
if name in batch.keys():
|
| 712 |
in_tensor_dict.update({name: batch[name]})
|
| 713 |
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 718 |
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
netG=self.netG,
|
| 724 |
-
features=features,
|
| 725 |
-
proj_matrix=None)
|
| 726 |
|
| 727 |
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf)
|
| 728 |
|
|
|
|
| 14 |
#
|
| 15 |
# Contact: [email protected]
|
| 16 |
|
| 17 |
+
|
| 18 |
+
import os
|
| 19 |
+
|
| 20 |
from lib.common.seg3d_lossless import Seg3dLossless
|
| 21 |
from lib.dataset.Evaluator import Evaluator
|
| 22 |
from lib.net import HGPIFuNet
|
| 23 |
from lib.common.train_util import *
|
| 24 |
from lib.common.render import Render
|
| 25 |
from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility
|
| 26 |
+
import warnings
|
| 27 |
+
import logging
|
| 28 |
import torch
|
| 29 |
import lib.smplx as smplx
|
| 30 |
import numpy as np
|
| 31 |
from torch import nn
|
| 32 |
+
import os.path as osp
|
| 33 |
+
|
| 34 |
from skimage.transform import resize
|
| 35 |
import pytorch_lightning as pl
|
| 36 |
+
from huggingface_hub import cached_download
|
| 37 |
|
| 38 |
torch.backends.cudnn.benchmark = True
|
| 39 |
|
| 40 |
+
logging.getLogger("lightning").setLevel(logging.ERROR)
|
| 41 |
|
| 42 |
+
warnings.filterwarnings("ignore")
|
| 43 |
|
| 44 |
+
|
| 45 |
+
class ICON(pl.LightningModule):
|
| 46 |
def __init__(self, cfg):
|
| 47 |
super(ICON, self).__init__()
|
| 48 |
|
|
|
|
| 61 |
error_term=nn.SmoothL1Loss() if self.use_sdf else nn.MSELoss(),
|
| 62 |
)
|
| 63 |
|
| 64 |
+
# TODO: replace the renderer from opengl to pytorch3d
|
| 65 |
self.evaluator = Evaluator(
|
| 66 |
device=torch.device(f"cuda:{self.cfg.gpus[0]}"))
|
| 67 |
|
| 68 |
+
self.resolutions = (
|
| 69 |
+
np.logspace(
|
| 70 |
+
start=5,
|
| 71 |
+
stop=np.log2(self.mcube_res),
|
| 72 |
+
base=2,
|
| 73 |
+
num=int(np.log2(self.mcube_res) - 4),
|
| 74 |
+
endpoint=True,
|
| 75 |
+
)
|
| 76 |
+
+ 1.0
|
| 77 |
+
)
|
| 78 |
self.resolutions = self.resolutions.astype(np.int16).tolist()
|
| 79 |
|
| 80 |
+
self.icon_keys = ["smpl_verts", "smpl_faces", "smpl_vis", "smpl_cmap"]
|
| 81 |
+
self.pamir_keys = ["voxel_verts",
|
| 82 |
+
"voxel_faces", "pad_v_num", "pad_f_num"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
self.reconEngine = Seg3dLossless(
|
| 85 |
query_func=query_func,
|
|
|
|
| 96 |
)
|
| 97 |
|
| 98 |
self.render = Render(
|
| 99 |
+
size=512, device=torch.device(f"cuda:{self.cfg.test_gpus[0]}")
|
| 100 |
+
)
|
| 101 |
self.smpl_data = SMPLX()
|
| 102 |
|
| 103 |
self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create(
|
| 104 |
self.smpl_data.model_dir,
|
| 105 |
+
kid_template_path=cached_download(osp.join(self.smpl_data.model_dir,
|
| 106 |
+
f"{smpl_type}/{smpl_type}_kid_template.npy"), use_auth_token=os.environ['ICON']),
|
|
|
|
|
|
|
| 107 |
model_type=smpl_type,
|
| 108 |
gender=gender,
|
| 109 |
age=age,
|
|
|
|
| 134 |
weight_decay = self.cfg.weight_decay
|
| 135 |
momentum = self.cfg.momentum
|
| 136 |
|
| 137 |
+
optim_params_G = [
|
| 138 |
+
{"params": self.netG.if_regressor.parameters(), "lr": self.lr_G}
|
| 139 |
+
]
|
|
|
|
| 140 |
|
| 141 |
if self.cfg.net.use_filter:
|
| 142 |
+
optim_params_G.append(
|
| 143 |
+
{"params": self.netG.F_filter.parameters(), "lr": self.lr_G}
|
| 144 |
+
)
|
|
|
|
| 145 |
|
| 146 |
if self.cfg.net.prior_type == "pamir":
|
| 147 |
+
optim_params_G.append(
|
| 148 |
+
{"params": self.netG.ve.parameters(), "lr": self.lr_G}
|
| 149 |
+
)
|
|
|
|
| 150 |
|
| 151 |
if self.cfg.optim == "Adadelta":
|
| 152 |
|
| 153 |
+
optimizer_G = torch.optim.Adadelta(
|
| 154 |
+
optim_params_G, lr=self.lr_G, weight_decay=weight_decay
|
| 155 |
+
)
|
| 156 |
|
| 157 |
elif self.cfg.optim == "Adam":
|
| 158 |
|
| 159 |
+
optimizer_G = torch.optim.Adam(
|
| 160 |
+
optim_params_G, lr=self.lr_G, weight_decay=weight_decay
|
| 161 |
+
)
|
| 162 |
|
| 163 |
elif self.cfg.optim == "RMSprop":
|
| 164 |
|
|
|
|
| 174 |
|
| 175 |
# set scheduler
|
| 176 |
scheduler_G = torch.optim.lr_scheduler.MultiStepLR(
|
| 177 |
+
optimizer_G, milestones=self.cfg.schedule, gamma=self.cfg.gamma
|
| 178 |
+
)
|
| 179 |
|
| 180 |
return [optimizer_G], [scheduler_G]
|
| 181 |
|
|
|
|
| 195 |
for name in self.in_total:
|
| 196 |
in_tensor_dict.update({name: batch[name]})
|
| 197 |
|
| 198 |
+
if self.prior_type == "icon":
|
| 199 |
+
for key in self.icon_keys:
|
| 200 |
+
in_tensor_dict.update({key: batch[key]})
|
| 201 |
+
elif self.prior_type == "pamir":
|
| 202 |
+
for key in self.pamir_keys:
|
| 203 |
+
in_tensor_dict.update({key: batch[key]})
|
| 204 |
+
else:
|
| 205 |
+
pass
|
| 206 |
|
| 207 |
preds_G, error_G = self.netG(in_tensor_dict)
|
| 208 |
|
|
|
|
| 231 |
self.render_func(in_tensor_dict, dataset="train")
|
| 232 |
|
| 233 |
metrics_return = {
|
| 234 |
+
k.replace("train_", ""): torch.tensor(v) for k, v in metrics_log.items()
|
|
|
|
| 235 |
}
|
| 236 |
|
| 237 |
+
metrics_return.update(
|
| 238 |
+
{"loss": error_G, "log": tf_log, "progress_bar": bar_log})
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
return metrics_return
|
| 241 |
|
|
|
|
| 271 |
for name in self.in_total:
|
| 272 |
in_tensor_dict.update({name: batch[name]})
|
| 273 |
|
| 274 |
+
if self.prior_type == "icon":
|
| 275 |
+
for key in self.icon_keys:
|
| 276 |
+
in_tensor_dict.update({key: batch[key]})
|
| 277 |
+
elif self.prior_type == "pamir":
|
| 278 |
+
for key in self.pamir_keys:
|
| 279 |
+
in_tensor_dict.update({key: batch[key]})
|
| 280 |
+
else:
|
| 281 |
+
pass
|
| 282 |
+
|
| 283 |
preds_G, error_G = self.netG(in_tensor_dict)
|
| 284 |
|
| 285 |
acc, iou, prec, recall = self.evaluator.calc_acc(
|
|
|
|
| 322 |
|
| 323 |
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1)
|
| 324 |
smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long())
|
| 325 |
+
if smpl_type == "smpl":
|
| 326 |
+
smplx_ind = self.smpl_data.smpl2smplx(np.arange(smpl_vis.shape[0]))
|
| 327 |
+
else:
|
| 328 |
+
smplx_ind = np.arange(smpl_vis.shape[0])
|
| 329 |
+
smpl_cmap = self.smpl_data.get_smpl_mat(smplx_ind)
|
| 330 |
|
| 331 |
return {
|
| 332 |
"smpl_vis": smpl_vis.unsqueeze(0).to(self.device),
|
|
|
|
| 337 |
@torch.enable_grad()
|
| 338 |
def optim_body(self, in_tensor_dict, batch):
|
| 339 |
|
| 340 |
+
smpl_model = self.get_smpl_model(
|
| 341 |
+
batch["type"][0], batch["gender"][0], batch["age"][0], None
|
| 342 |
+
).to(self.device)
|
| 343 |
+
in_tensor_dict["smpl_faces"] = (
|
| 344 |
+
torch.tensor(smpl_model.faces.astype(np.int))
|
| 345 |
+
.long()
|
| 346 |
+
.unsqueeze(0)
|
| 347 |
+
.to(self.device)
|
| 348 |
+
)
|
| 349 |
|
| 350 |
# The optimizer and variables
|
| 351 |
+
optimed_pose = torch.tensor(
|
| 352 |
+
batch["body_pose"][0], device=self.device, requires_grad=True
|
| 353 |
+
) # [1,23,3,3]
|
| 354 |
+
optimed_trans = torch.tensor(
|
| 355 |
+
batch["transl"][0], device=self.device, requires_grad=True
|
| 356 |
+
) # [3]
|
| 357 |
+
optimed_betas = torch.tensor(
|
| 358 |
+
batch["betas"][0], device=self.device, requires_grad=True
|
| 359 |
+
) # [1,10]
|
| 360 |
+
optimed_orient = torch.tensor(
|
| 361 |
+
batch["global_orient"][0], device=self.device, requires_grad=True
|
| 362 |
+
) # [1,1,3,3]
|
| 363 |
|
| 364 |
optimizer_smpl = torch.optim.SGD(
|
| 365 |
[optimed_pose, optimed_trans, optimed_betas, optimed_orient],
|
|
|
|
| 367 |
momentum=0.9,
|
| 368 |
)
|
| 369 |
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
| 370 |
+
optimizer_smpl, mode="min", factor=0.5, verbose=0, min_lr=1e-5, patience=5
|
| 371 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
loop_smpl = range(50)
|
| 373 |
for i in loop_smpl:
|
| 374 |
|
|
|
|
| 384 |
)
|
| 385 |
|
| 386 |
smpl_verts = smpl_out.vertices[0] * 100.0
|
| 387 |
+
smpl_verts = projection(
|
| 388 |
+
smpl_verts, batch["calib"][0], format="tensor")
|
|
|
|
| 389 |
smpl_verts[:, 1] *= -1
|
| 390 |
# render optimized mesh (normal, T_normal, image [-1,1])
|
| 391 |
+
self.render.load_meshes(
|
| 392 |
+
smpl_verts, in_tensor_dict["smpl_faces"])
|
| 393 |
(
|
| 394 |
in_tensor_dict["T_normal_F"],
|
| 395 |
in_tensor_dict["T_normal_B"],
|
|
|
|
| 404 |
) = self.netG.normal_filter(in_tensor_dict)
|
| 405 |
|
| 406 |
# mask = torch.abs(in_tensor['T_normal_F']).sum(dim=0, keepdims=True) > 0.0
|
| 407 |
+
diff_F_smpl = torch.abs(
|
| 408 |
+
in_tensor_dict["T_normal_F"] - in_tensor_dict["normal_F"]
|
| 409 |
+
)
|
| 410 |
+
diff_B_smpl = torch.abs(
|
| 411 |
+
in_tensor_dict["T_normal_B"] - in_tensor_dict["normal_B"]
|
| 412 |
+
)
|
| 413 |
loss = (diff_F_smpl + diff_B_smpl).mean()
|
| 414 |
|
| 415 |
# silhouette loss
|
| 416 |
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]
|
| 417 |
gt_arr = torch.cat(
|
| 418 |
+
[in_tensor_dict["normal_F"][0], in_tensor_dict["normal_B"][0]], dim=2
|
| 419 |
+
).permute(1, 2, 0)
|
| 420 |
gt_arr = ((gt_arr + 1.0) * 0.5).to(self.device)
|
| 421 |
+
bg_color = (
|
| 422 |
+
torch.Tensor([0.5, 0.5, 0.5]).unsqueeze(
|
| 423 |
+
0).unsqueeze(0).to(self.device)
|
| 424 |
+
)
|
| 425 |
gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float()
|
| 426 |
loss += torch.abs(smpl_arr - gt_arr).mean()
|
| 427 |
|
|
|
|
| 439 |
batch["type"][0],
|
| 440 |
in_tensor_dict["smpl_verts"][0],
|
| 441 |
in_tensor_dict["smpl_faces"][0],
|
| 442 |
+
)
|
| 443 |
+
)
|
| 444 |
|
| 445 |
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
|
| 446 |
|
|
|
|
| 454 |
verts_pr /= (self.resolutions[-1] - 1) / 2.0
|
| 455 |
|
| 456 |
losses = {
|
| 457 |
+
"cloth": {"weight": 5.0, "value": 0.0},
|
| 458 |
+
"edge": {"weight": 100.0, "value": 0.0},
|
| 459 |
+
"normal": {"weight": 0.2, "value": 0.0},
|
| 460 |
+
"laplacian": {"weight": 100.0, "value": 0.0},
|
| 461 |
+
"smpl": {"weight": 1.0, "value": 0.0},
|
| 462 |
+
"deform": {"weight": 20.0, "value": 0.0},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
}
|
| 464 |
|
| 465 |
+
deform_verts = torch.full(
|
| 466 |
+
verts_pr.shape, 0.0, device=self.device, requires_grad=True
|
| 467 |
+
)
|
| 468 |
+
optimizer_cloth = torch.optim.SGD(
|
| 469 |
+
[deform_verts], lr=1e-1, momentum=0.9)
|
|
|
|
|
|
|
| 470 |
scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
| 471 |
+
optimizer_cloth, mode="min", factor=0.1, verbose=0, min_lr=1e-3, patience=5
|
| 472 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
# cloth optimization
|
| 474 |
loop_cloth = range(100)
|
| 475 |
|
|
|
|
| 489 |
diff_B_cloth = torch.abs(P_normal_B[0] - inter[3:])
|
| 490 |
losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean()
|
| 491 |
losses["deform"]["value"] = torch.topk(
|
| 492 |
+
torch.abs(deform_verts.flatten()), 30
|
| 493 |
+
)[0].mean()
|
| 494 |
|
| 495 |
# Weighted sum of the losses
|
| 496 |
cloth_loss = torch.tensor(0.0, device=self.device)
|
|
|
|
| 510 |
|
| 511 |
# convert from GT to SDF
|
| 512 |
deform_verts = deform_verts.flatten().detach()
|
| 513 |
+
deform_verts[torch.topk(torch.abs(deform_verts), 30)[
|
| 514 |
+
1]] = deform_verts.mean()
|
| 515 |
deform_verts = deform_verts.view(-1, 3).cpu()
|
| 516 |
|
| 517 |
verts_pr += deform_verts
|
|
|
|
| 522 |
|
| 523 |
def test_step(self, batch, batch_idx):
|
| 524 |
|
| 525 |
+
# dict_keys(['dataset', 'subject', 'rotation', 'scale', 'calib',
|
| 526 |
+
# 'normal_F', 'normal_B', 'image', 'T_normal_F', 'T_normal_B',
|
| 527 |
+
# 'z-trans', 'verts', 'faces', 'samples_geo', 'labels_geo',
|
| 528 |
+
# 'smpl_verts', 'smpl_faces', 'smpl_vis', 'smpl_cmap', 'pts_signs',
|
| 529 |
+
# 'type', 'gender', 'age', 'body_pose', 'global_orient', 'betas', 'transl'])
|
| 530 |
+
|
| 531 |
+
if self.evaluator._normal_render is None:
|
| 532 |
+
self.evaluator.init_gl()
|
| 533 |
+
|
| 534 |
self.netG.eval()
|
| 535 |
self.netG.training = False
|
| 536 |
in_tensor_dict = {}
|
|
|
|
| 538 |
# export paths
|
| 539 |
mesh_name = batch["subject"][0]
|
| 540 |
mesh_rot = batch["rotation"][0].item()
|
| 541 |
+
ckpt_dir = self.cfg.name
|
| 542 |
+
|
| 543 |
+
for kid, key in enumerate(self.cfg.dataset.noise_type):
|
| 544 |
+
ckpt_dir += f"_{key}_{self.cfg.dataset.noise_scale[kid]}"
|
| 545 |
|
| 546 |
+
if self.cfg.optim_cloth:
|
| 547 |
+
ckpt_dir += "_optim_cloth"
|
| 548 |
+
if self.cfg.optim_body:
|
| 549 |
+
ckpt_dir += "_optim_body"
|
| 550 |
|
| 551 |
+
self.export_dir = osp.join(self.cfg.results_path, ckpt_dir, mesh_name)
|
| 552 |
os.makedirs(self.export_dir, exist_ok=True)
|
| 553 |
|
| 554 |
for name in self.in_total:
|
| 555 |
if name in batch.keys():
|
| 556 |
in_tensor_dict.update({name: batch[name]})
|
| 557 |
|
| 558 |
+
# update the new T_normal_F/B
|
| 559 |
+
in_tensor_dict.update(
|
| 560 |
+
self.evaluator.render_normal(
|
| 561 |
+
batch["smpl_verts"], batch["smpl_faces"])
|
| 562 |
+
)
|
|
|
|
|
|
|
| 563 |
|
| 564 |
+
# update the new smpl_vis
|
| 565 |
+
(xy, z) = batch["smpl_verts"][0].split([2, 1], dim=1)
|
| 566 |
+
smpl_vis = get_visibility(
|
| 567 |
+
xy,
|
| 568 |
+
z,
|
| 569 |
+
torch.as_tensor(self.smpl_data.faces).type_as(
|
| 570 |
+
batch["smpl_verts"]).long(),
|
| 571 |
+
)
|
| 572 |
+
in_tensor_dict.update({"smpl_vis": smpl_vis.unsqueeze(0)})
|
| 573 |
+
|
| 574 |
+
if self.prior_type == "icon":
|
| 575 |
+
for key in self.icon_keys:
|
| 576 |
+
in_tensor_dict.update({key: batch[key]})
|
| 577 |
+
elif self.prior_type == "pamir":
|
| 578 |
+
for key in self.pamir_keys:
|
| 579 |
+
in_tensor_dict.update({key: batch[key]})
|
| 580 |
+
else:
|
| 581 |
+
pass
|
| 582 |
|
| 583 |
with torch.no_grad():
|
| 584 |
+
if self.cfg.optim_body:
|
| 585 |
+
features, inter, in_tensor_dict = self.optim_body(
|
| 586 |
+
in_tensor_dict, batch)
|
| 587 |
+
else:
|
| 588 |
+
features, inter = self.netG.filter(
|
| 589 |
+
in_tensor_dict, return_inter=True)
|
| 590 |
+
sdf = self.reconEngine(
|
| 591 |
+
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None
|
| 592 |
+
)
|
|
|
|
| 593 |
|
| 594 |
# save inter results
|
| 595 |
+
image = (
|
| 596 |
+
in_tensor_dict["image"][0].permute(
|
| 597 |
+
1, 2, 0).detach().cpu().numpy() + 1.0
|
| 598 |
+
) * 0.5
|
| 599 |
+
smpl_F = (
|
| 600 |
+
in_tensor_dict["T_normal_F"][0].permute(
|
| 601 |
+
1, 2, 0).detach().cpu().numpy()
|
| 602 |
+
+ 1.0
|
| 603 |
+
) * 0.5
|
| 604 |
+
smpl_B = (
|
| 605 |
+
in_tensor_dict["T_normal_B"][0].permute(
|
| 606 |
+
1, 2, 0).detach().cpu().numpy()
|
| 607 |
+
+ 1.0
|
| 608 |
+
) * 0.5
|
| 609 |
+
image_inter = np.concatenate(
|
| 610 |
+
self.tensor2image(512, inter[0]) + [smpl_F, smpl_B, image], axis=1
|
| 611 |
+
)
|
| 612 |
+
Image.fromarray((image_inter * 255.0).astype(np.uint8)).save(
|
| 613 |
+
osp.join(self.export_dir, f"{mesh_rot}_inter.png")
|
| 614 |
+
)
|
| 615 |
|
| 616 |
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf)
|
| 617 |
|
| 618 |
if self.clean_mesh_flag:
|
| 619 |
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr)
|
| 620 |
|
| 621 |
+
if self.cfg.optim_cloth:
|
| 622 |
+
verts_pr = self.optim_cloth(verts_pr, faces_pr, inter[0].detach())
|
| 623 |
+
|
| 624 |
verts_gt = batch["verts"][0]
|
| 625 |
faces_gt = batch["faces"][0]
|
| 626 |
|
| 627 |
+
self.result_eval.update(
|
| 628 |
+
{
|
| 629 |
+
"verts_gt": verts_gt,
|
| 630 |
+
"faces_gt": faces_gt,
|
| 631 |
+
"verts_pr": verts_pr,
|
| 632 |
+
"faces_pr": faces_pr,
|
| 633 |
+
"recon_size": (self.resolutions[-1] - 1.0),
|
| 634 |
+
"calib": batch["calib"][0],
|
| 635 |
+
}
|
| 636 |
+
)
|
| 637 |
+
|
| 638 |
+
self.evaluator.set_mesh(self.result_eval, scale_factor=1.0)
|
| 639 |
+
self.evaluator.space_transfer()
|
| 640 |
+
|
| 641 |
+
chamfer, p2s = self.evaluator.calculate_chamfer_p2s(
|
| 642 |
+
sampled_points=1000)
|
| 643 |
normal_consist = self.evaluator.calculate_normal_consist(
|
| 644 |
+
save_demo_img=osp.join(self.export_dir, f"{mesh_rot}_nc.png")
|
| 645 |
+
)
|
| 646 |
|
| 647 |
test_log = {"chamfer": chamfer, "p2s": p2s, "NC": normal_consist}
|
| 648 |
|
|
|
|
| 656 |
outputs,
|
| 657 |
rot_num=3,
|
| 658 |
split={
|
| 659 |
+
"thuman2": (0, 5),
|
|
|
|
| 660 |
},
|
| 661 |
)
|
| 662 |
|
|
|
|
| 664 |
print(colored(self.cfg.dataset.noise_scale, "green"))
|
| 665 |
|
| 666 |
self.logger.experiment.add_hparams(
|
| 667 |
+
hparam_dict={"lr_G": self.lr_G, "bsize": self.batch_size},
|
|
|
|
|
|
|
|
|
|
| 668 |
metric_dict=accu_outputs,
|
| 669 |
)
|
| 670 |
|
|
|
|
| 682 |
for dim in self.in_geo_dim:
|
| 683 |
img = resize(
|
| 684 |
np.tile(
|
| 685 |
+
((inter[:dim].cpu().numpy() + 1.0) /
|
| 686 |
+
2.0).transpose(1, 2, 0),
|
| 687 |
(1, 1, int(3 / dim)),
|
| 688 |
),
|
| 689 |
(height, height),
|
|
|
|
| 698 |
def render_func(self, in_tensor_dict, dataset="title", idx=0):
|
| 699 |
|
| 700 |
for name in in_tensor_dict.keys():
|
| 701 |
+
in_tensor_dict[name] = in_tensor_dict[name][0:1]
|
|
|
|
| 702 |
|
| 703 |
self.netG.eval()
|
| 704 |
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
|
| 705 |
+
sdf = self.reconEngine(
|
| 706 |
+
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None
|
| 707 |
+
)
|
|
|
|
| 708 |
|
| 709 |
if sdf is not None:
|
| 710 |
render = self.reconEngine.display(sdf)
|
|
|
|
| 713 |
height = image_pred.shape[0]
|
| 714 |
|
| 715 |
image_gt = resize(
|
| 716 |
+
((in_tensor_dict["image"].cpu().numpy()[0] + 1.0) / 2.0).transpose(
|
| 717 |
+
1, 2, 0
|
| 718 |
+
),
|
| 719 |
(height, height),
|
| 720 |
anti_aliasing=True,
|
| 721 |
)
|
| 722 |
image_inter = self.tensor2image(height, inter[0])
|
| 723 |
+
image = np.concatenate(
|
| 724 |
+
[image_pred, image_gt] + image_inter, axis=1)
|
| 725 |
|
| 726 |
step_id = self.global_step if dataset == "train" else self.global_step + idx
|
| 727 |
self.logger.experiment.add_image(
|
|
|
|
| 740 |
if name in batch.keys():
|
| 741 |
in_tensor_dict.update({name: batch[name]})
|
| 742 |
|
| 743 |
+
if self.prior_type == "icon":
|
| 744 |
+
for key in self.icon_keys:
|
| 745 |
+
in_tensor_dict.update({key: batch[key]})
|
| 746 |
+
elif self.prior_type == "pamir":
|
| 747 |
+
for key in self.pamir_keys:
|
| 748 |
+
in_tensor_dict.update({key: batch[key]})
|
| 749 |
+
else:
|
| 750 |
+
pass
|
| 751 |
|
| 752 |
+
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
|
| 753 |
+
sdf = self.reconEngine(
|
| 754 |
+
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None
|
| 755 |
+
)
|
|
|
|
|
|
|
|
|
|
| 756 |
|
| 757 |
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf)
|
| 758 |
|