Spaces:
Build error
Build error
Create pymaf/utils/imutils.py
Browse files- lib/pymaf/utils/imutils.py +491 -0
lib/pymaf/utils/imutils.py
ADDED
|
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file contains functions that are used to perform data augmentation.
|
| 3 |
+
"""
|
| 4 |
+
import cv2
|
| 5 |
+
import io
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from rembg import remove
|
| 10 |
+
from rembg.session_factory import new_session
|
| 11 |
+
from torchvision.models import detection
|
| 12 |
+
|
| 13 |
+
from lib.pymaf.core import constants
|
| 14 |
+
from lib.pymaf.utils.streamer import aug_matrix
|
| 15 |
+
from lib.common.cloth_extraction import load_segmentation
|
| 16 |
+
from torchvision import transforms
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def load_img(img_file):
|
| 20 |
+
|
| 21 |
+
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
|
| 22 |
+
if len(img.shape) == 2:
|
| 23 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 24 |
+
|
| 25 |
+
if not img_file.endswith("png"):
|
| 26 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 27 |
+
else:
|
| 28 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
|
| 29 |
+
|
| 30 |
+
return img
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_bbox(img, det):
|
| 34 |
+
|
| 35 |
+
input = np.float32(img)
|
| 36 |
+
input = (input / 255.0 -
|
| 37 |
+
(0.5, 0.5, 0.5)) / (0.5, 0.5, 0.5) # TO [-1.0, 1.0]
|
| 38 |
+
input = input.transpose(2, 0, 1) # TO [3 x H x W]
|
| 39 |
+
bboxes, probs = det(torch.from_numpy(input).float().unsqueeze(0))
|
| 40 |
+
|
| 41 |
+
probs = probs.unsqueeze(3)
|
| 42 |
+
bboxes = (bboxes * probs).sum(dim=1, keepdim=True) / probs.sum(
|
| 43 |
+
dim=1, keepdim=True)
|
| 44 |
+
bbox = bboxes[0, 0, 0].cpu().numpy()
|
| 45 |
+
|
| 46 |
+
return bbox
|
| 47 |
+
# Michael Black is
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_transformer(input_res):
|
| 51 |
+
|
| 52 |
+
image_to_tensor = transforms.Compose([
|
| 53 |
+
transforms.Resize(input_res),
|
| 54 |
+
transforms.ToTensor(),
|
| 55 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 56 |
+
])
|
| 57 |
+
|
| 58 |
+
mask_to_tensor = transforms.Compose([
|
| 59 |
+
transforms.Resize(input_res),
|
| 60 |
+
transforms.ToTensor(),
|
| 61 |
+
transforms.Normalize((0.0, ), (1.0, ))
|
| 62 |
+
])
|
| 63 |
+
|
| 64 |
+
image_to_pymaf_tensor = transforms.Compose([
|
| 65 |
+
transforms.Resize(size=224),
|
| 66 |
+
transforms.Normalize(mean=constants.IMG_NORM_MEAN,
|
| 67 |
+
std=constants.IMG_NORM_STD)
|
| 68 |
+
])
|
| 69 |
+
|
| 70 |
+
image_to_pixie_tensor = transforms.Compose([
|
| 71 |
+
transforms.Resize(224)
|
| 72 |
+
])
|
| 73 |
+
|
| 74 |
+
def image_to_hybrik_tensor(img):
|
| 75 |
+
# mean
|
| 76 |
+
img[0].add_(-0.406)
|
| 77 |
+
img[1].add_(-0.457)
|
| 78 |
+
img[2].add_(-0.480)
|
| 79 |
+
|
| 80 |
+
# std
|
| 81 |
+
img[0].div_(0.225)
|
| 82 |
+
img[1].div_(0.224)
|
| 83 |
+
img[2].div_(0.229)
|
| 84 |
+
return img
|
| 85 |
+
|
| 86 |
+
return [image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, image_to_pixie_tensor, image_to_hybrik_tensor]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def process_image(img_file, hps_type, input_res=512, device=None, seg_path=None):
|
| 90 |
+
"""Read image, do preprocessing and possibly crop it according to the bounding box.
|
| 91 |
+
If there are bounding box annotations, use them to crop the image.
|
| 92 |
+
If no bounding box is specified but openpose detections are available, use them to get the bounding box.
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
[image_to_tensor, mask_to_tensor, image_to_pymaf_tensor,
|
| 96 |
+
image_to_pixie_tensor, image_to_hybrik_tensor] = get_transformer(input_res)
|
| 97 |
+
|
| 98 |
+
img_ori = load_img(img_file)
|
| 99 |
+
|
| 100 |
+
in_height, in_width, _ = img_ori.shape
|
| 101 |
+
M = aug_matrix(in_width, in_height, input_res*2, input_res*2)
|
| 102 |
+
|
| 103 |
+
# from rectangle to square
|
| 104 |
+
img_for_crop = cv2.warpAffine(img_ori, M[0:2, :],
|
| 105 |
+
(input_res*2, input_res*2), flags=cv2.INTER_CUBIC)
|
| 106 |
+
|
| 107 |
+
# detection for bbox
|
| 108 |
+
detector = detection.maskrcnn_resnet50_fpn(pretrained=True)
|
| 109 |
+
detector.eval()
|
| 110 |
+
predictions = detector(
|
| 111 |
+
[torch.from_numpy(img_for_crop).permute(2, 0, 1) / 255.])[0]
|
| 112 |
+
human_ids = torch.where(
|
| 113 |
+
predictions["scores"] == predictions["scores"][predictions['labels'] == 1].max())
|
| 114 |
+
bbox = predictions["boxes"][human_ids, :].flatten().detach().cpu().numpy()
|
| 115 |
+
|
| 116 |
+
width = bbox[2] - bbox[0]
|
| 117 |
+
height = bbox[3] - bbox[1]
|
| 118 |
+
center = np.array([(bbox[0] + bbox[2]) / 2.0,
|
| 119 |
+
(bbox[1] + bbox[3]) / 2.0])
|
| 120 |
+
|
| 121 |
+
scale = max(height, width) / 180
|
| 122 |
+
|
| 123 |
+
if hps_type == 'hybrik':
|
| 124 |
+
img_np = crop_for_hybrik(img_for_crop, center,
|
| 125 |
+
np.array([scale * 180, scale * 180]))
|
| 126 |
+
else:
|
| 127 |
+
img_np, cropping_parameters = crop(
|
| 128 |
+
img_for_crop, center, scale, (input_res, input_res))
|
| 129 |
+
|
| 130 |
+
img_pil = Image.fromarray(remove(img_np, post_process_mask=True, session=new_session("u2net")))
|
| 131 |
+
|
| 132 |
+
# for icon
|
| 133 |
+
img_rgb = image_to_tensor(img_pil.convert("RGB"))
|
| 134 |
+
img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) <
|
| 135 |
+
torch.tensor(0.5)).float()
|
| 136 |
+
img_tensor = img_rgb * img_mask
|
| 137 |
+
|
| 138 |
+
# for hps
|
| 139 |
+
img_hps = img_np.astype(np.float32) / 255.
|
| 140 |
+
img_hps = torch.from_numpy(img_hps).permute(2, 0, 1)
|
| 141 |
+
|
| 142 |
+
if hps_type == 'bev':
|
| 143 |
+
img_hps = img_np[:, :, [2, 1, 0]]
|
| 144 |
+
elif hps_type == 'hybrik':
|
| 145 |
+
img_hps = image_to_hybrik_tensor(img_hps).unsqueeze(0).to(device)
|
| 146 |
+
elif hps_type != 'pixie':
|
| 147 |
+
img_hps = image_to_pymaf_tensor(img_hps).unsqueeze(0).to(device)
|
| 148 |
+
else:
|
| 149 |
+
img_hps = image_to_pixie_tensor(img_hps).unsqueeze(0).to(device)
|
| 150 |
+
|
| 151 |
+
# uncrop params
|
| 152 |
+
uncrop_param = {'center': center,
|
| 153 |
+
'scale': scale,
|
| 154 |
+
'ori_shape': img_ori.shape,
|
| 155 |
+
'box_shape': img_np.shape,
|
| 156 |
+
'crop_shape': img_for_crop.shape,
|
| 157 |
+
'M': M}
|
| 158 |
+
|
| 159 |
+
if not (seg_path is None):
|
| 160 |
+
segmentations = load_segmentation(seg_path, (in_height, in_width))
|
| 161 |
+
seg_coord_normalized = []
|
| 162 |
+
for seg in segmentations:
|
| 163 |
+
coord_normalized = []
|
| 164 |
+
for xy in seg['coordinates']:
|
| 165 |
+
xy_h = np.vstack((xy[:, 0], xy[:, 1], np.ones(len(xy)))).T
|
| 166 |
+
warped_indeces = M[0:2, :] @ xy_h[:, :, None]
|
| 167 |
+
warped_indeces = np.array(warped_indeces).astype(int)
|
| 168 |
+
warped_indeces.resize((warped_indeces.shape[:2]))
|
| 169 |
+
|
| 170 |
+
# cropped_indeces = crop_segmentation(warped_indeces, center, scale, (input_res, input_res), img_np.shape)
|
| 171 |
+
cropped_indeces = crop_segmentation(
|
| 172 |
+
warped_indeces, (input_res, input_res), cropping_parameters)
|
| 173 |
+
|
| 174 |
+
indices = np.vstack(
|
| 175 |
+
(cropped_indeces[:, 0], cropped_indeces[:, 1])).T
|
| 176 |
+
|
| 177 |
+
# Convert to NDC coordinates
|
| 178 |
+
seg_cropped_normalized = 2*(indices / input_res) - 1
|
| 179 |
+
# Don't know why we need to divide by 50 but it works ¯\_(ツ)_/¯ (probably some scaling factor somewhere)
|
| 180 |
+
# Divide only by 45 on the horizontal axis to take the curve of the human body into account
|
| 181 |
+
seg_cropped_normalized[:, 0] = (
|
| 182 |
+
1/40) * seg_cropped_normalized[:, 0]
|
| 183 |
+
seg_cropped_normalized[:, 1] = (
|
| 184 |
+
1/50) * seg_cropped_normalized[:, 1]
|
| 185 |
+
coord_normalized.append(seg_cropped_normalized)
|
| 186 |
+
|
| 187 |
+
seg['coord_normalized'] = coord_normalized
|
| 188 |
+
seg_coord_normalized.append(seg)
|
| 189 |
+
|
| 190 |
+
return img_tensor, img_hps, img_ori, img_mask, uncrop_param, seg_coord_normalized
|
| 191 |
+
|
| 192 |
+
return img_tensor, img_hps, img_ori, img_mask, uncrop_param
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def get_transform(center, scale, res):
|
| 196 |
+
"""Generate transformation matrix."""
|
| 197 |
+
h = 200 * scale
|
| 198 |
+
t = np.zeros((3, 3))
|
| 199 |
+
t[0, 0] = float(res[1]) / h
|
| 200 |
+
t[1, 1] = float(res[0]) / h
|
| 201 |
+
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
|
| 202 |
+
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
|
| 203 |
+
t[2, 2] = 1
|
| 204 |
+
|
| 205 |
+
return t
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def transform(pt, center, scale, res, invert=0):
|
| 209 |
+
"""Transform pixel location to different reference."""
|
| 210 |
+
t = get_transform(center, scale, res)
|
| 211 |
+
if invert:
|
| 212 |
+
t = np.linalg.inv(t)
|
| 213 |
+
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
|
| 214 |
+
new_pt = np.dot(t, new_pt)
|
| 215 |
+
return np.around(new_pt[:2]).astype(np.int16)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def crop(img, center, scale, res):
|
| 219 |
+
"""Crop image according to the supplied bounding box."""
|
| 220 |
+
|
| 221 |
+
# Upper left point
|
| 222 |
+
ul = np.array(transform([0, 0], center, scale, res, invert=1))
|
| 223 |
+
|
| 224 |
+
# Bottom right point
|
| 225 |
+
br = np.array(transform(res, center, scale, res, invert=1))
|
| 226 |
+
|
| 227 |
+
new_shape = [br[1] - ul[1], br[0] - ul[0]]
|
| 228 |
+
if len(img.shape) > 2:
|
| 229 |
+
new_shape += [img.shape[2]]
|
| 230 |
+
new_img = np.zeros(new_shape)
|
| 231 |
+
|
| 232 |
+
# Range to fill new array
|
| 233 |
+
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
|
| 234 |
+
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
|
| 235 |
+
|
| 236 |
+
# Range to sample from original image
|
| 237 |
+
old_x = max(0, ul[0]), min(len(img[0]), br[0])
|
| 238 |
+
old_y = max(0, ul[1]), min(len(img), br[1])
|
| 239 |
+
|
| 240 |
+
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]
|
| 241 |
+
] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
|
| 242 |
+
if len(img.shape) == 2:
|
| 243 |
+
new_img = np.array(Image.fromarray(new_img).resize(res))
|
| 244 |
+
else:
|
| 245 |
+
new_img = np.array(Image.fromarray(
|
| 246 |
+
new_img.astype(np.uint8)).resize(res))
|
| 247 |
+
|
| 248 |
+
return new_img, (old_x, new_x, old_y, new_y, new_shape)
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def crop_segmentation(org_coord, res, cropping_parameters):
|
| 252 |
+
old_x, new_x, old_y, new_y, new_shape = cropping_parameters
|
| 253 |
+
|
| 254 |
+
new_coord = np.zeros((org_coord.shape))
|
| 255 |
+
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0])
|
| 256 |
+
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0])
|
| 257 |
+
|
| 258 |
+
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1])
|
| 259 |
+
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0])
|
| 260 |
+
|
| 261 |
+
return new_coord
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def crop_for_hybrik(img, center, scale):
|
| 265 |
+
inp_h, inp_w = (256, 256)
|
| 266 |
+
trans = get_affine_transform(center, scale, 0, [inp_w, inp_h])
|
| 267 |
+
new_img = cv2.warpAffine(
|
| 268 |
+
img, trans, (int(inp_w), int(inp_h)), flags=cv2.INTER_LINEAR)
|
| 269 |
+
return new_img
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def get_affine_transform(center,
|
| 273 |
+
scale,
|
| 274 |
+
rot,
|
| 275 |
+
output_size,
|
| 276 |
+
shift=np.array([0, 0], dtype=np.float32),
|
| 277 |
+
inv=0):
|
| 278 |
+
|
| 279 |
+
def get_dir(src_point, rot_rad):
|
| 280 |
+
"""Rotate the point by `rot_rad` degree."""
|
| 281 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
| 282 |
+
|
| 283 |
+
src_result = [0, 0]
|
| 284 |
+
src_result[0] = src_point[0] * cs - src_point[1] * sn
|
| 285 |
+
src_result[1] = src_point[0] * sn + src_point[1] * cs
|
| 286 |
+
|
| 287 |
+
return src_result
|
| 288 |
+
|
| 289 |
+
def get_3rd_point(a, b):
|
| 290 |
+
"""Return vector c that perpendicular to (a - b)."""
|
| 291 |
+
direct = a - b
|
| 292 |
+
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
|
| 293 |
+
|
| 294 |
+
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
|
| 295 |
+
scale = np.array([scale, scale])
|
| 296 |
+
|
| 297 |
+
scale_tmp = scale
|
| 298 |
+
src_w = scale_tmp[0]
|
| 299 |
+
dst_w = output_size[0]
|
| 300 |
+
dst_h = output_size[1]
|
| 301 |
+
|
| 302 |
+
rot_rad = np.pi * rot / 180
|
| 303 |
+
src_dir = get_dir([0, src_w * -0.5], rot_rad)
|
| 304 |
+
dst_dir = np.array([0, dst_w * -0.5], np.float32)
|
| 305 |
+
|
| 306 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
| 307 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
| 308 |
+
src[0, :] = center + scale_tmp * shift
|
| 309 |
+
src[1, :] = center + src_dir + scale_tmp * shift
|
| 310 |
+
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
| 311 |
+
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
| 312 |
+
|
| 313 |
+
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
|
| 314 |
+
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
|
| 315 |
+
|
| 316 |
+
if inv:
|
| 317 |
+
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
| 318 |
+
else:
|
| 319 |
+
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
| 320 |
+
|
| 321 |
+
return trans
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def corner_align(ul, br):
|
| 325 |
+
|
| 326 |
+
if ul[1]-ul[0] != br[1]-br[0]:
|
| 327 |
+
ul[1] = ul[0]+br[1]-br[0]
|
| 328 |
+
|
| 329 |
+
return ul, br
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def uncrop(img, center, scale, orig_shape):
|
| 333 |
+
"""'Undo' the image cropping/resizing.
|
| 334 |
+
This function is used when evaluating mask/part segmentation.
|
| 335 |
+
"""
|
| 336 |
+
|
| 337 |
+
res = img.shape[:2]
|
| 338 |
+
|
| 339 |
+
# Upper left point
|
| 340 |
+
ul = np.array(transform([0, 0], center, scale, res, invert=1))
|
| 341 |
+
# Bottom right point
|
| 342 |
+
br = np.array(transform(res, center, scale, res, invert=1))
|
| 343 |
+
|
| 344 |
+
# quick fix
|
| 345 |
+
ul, br = corner_align(ul, br)
|
| 346 |
+
|
| 347 |
+
# size of cropped image
|
| 348 |
+
crop_shape = [br[1] - ul[1], br[0] - ul[0]]
|
| 349 |
+
new_img = np.zeros(orig_shape, dtype=np.uint8)
|
| 350 |
+
|
| 351 |
+
# Range to fill new array
|
| 352 |
+
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
|
| 353 |
+
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
|
| 354 |
+
|
| 355 |
+
# Range to sample from original image
|
| 356 |
+
old_x = max(0, ul[0]), min(orig_shape[1], br[0])
|
| 357 |
+
old_y = max(0, ul[1]), min(orig_shape[0], br[1])
|
| 358 |
+
|
| 359 |
+
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape))
|
| 360 |
+
|
| 361 |
+
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]
|
| 362 |
+
] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
|
| 363 |
+
|
| 364 |
+
return new_img
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def rot_aa(aa, rot):
|
| 368 |
+
"""Rotate axis angle parameters."""
|
| 369 |
+
# pose parameters
|
| 370 |
+
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
|
| 371 |
+
[np.sin(np.deg2rad(-rot)),
|
| 372 |
+
np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]])
|
| 373 |
+
# find the rotation of the body in camera frame
|
| 374 |
+
per_rdg, _ = cv2.Rodrigues(aa)
|
| 375 |
+
# apply the global rotation to the global orientation
|
| 376 |
+
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
|
| 377 |
+
aa = (resrot.T)[0]
|
| 378 |
+
return aa
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def flip_img(img):
|
| 382 |
+
"""Flip rgb images or masks.
|
| 383 |
+
channels come last, e.g. (256,256,3).
|
| 384 |
+
"""
|
| 385 |
+
img = np.fliplr(img)
|
| 386 |
+
return img
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def flip_kp(kp, is_smpl=False):
|
| 390 |
+
"""Flip keypoints."""
|
| 391 |
+
if len(kp) == 24:
|
| 392 |
+
if is_smpl:
|
| 393 |
+
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM
|
| 394 |
+
else:
|
| 395 |
+
flipped_parts = constants.J24_FLIP_PERM
|
| 396 |
+
elif len(kp) == 49:
|
| 397 |
+
if is_smpl:
|
| 398 |
+
flipped_parts = constants.SMPL_J49_FLIP_PERM
|
| 399 |
+
else:
|
| 400 |
+
flipped_parts = constants.J49_FLIP_PERM
|
| 401 |
+
kp = kp[flipped_parts]
|
| 402 |
+
kp[:, 0] = -kp[:, 0]
|
| 403 |
+
return kp
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
def flip_pose(pose):
|
| 407 |
+
"""Flip pose.
|
| 408 |
+
The flipping is based on SMPL parameters.
|
| 409 |
+
"""
|
| 410 |
+
flipped_parts = constants.SMPL_POSE_FLIP_PERM
|
| 411 |
+
pose = pose[flipped_parts]
|
| 412 |
+
# we also negate the second and the third dimension of the axis-angle
|
| 413 |
+
pose[1::3] = -pose[1::3]
|
| 414 |
+
pose[2::3] = -pose[2::3]
|
| 415 |
+
return pose
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def normalize_2d_kp(kp_2d, crop_size=224, inv=False):
|
| 419 |
+
# Normalize keypoints between -1, 1
|
| 420 |
+
if not inv:
|
| 421 |
+
ratio = 1.0 / crop_size
|
| 422 |
+
kp_2d = 2.0 * kp_2d * ratio - 1.0
|
| 423 |
+
else:
|
| 424 |
+
ratio = 1.0 / crop_size
|
| 425 |
+
kp_2d = (kp_2d + 1.0) / (2 * ratio)
|
| 426 |
+
|
| 427 |
+
return kp_2d
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None):
|
| 431 |
+
'''
|
| 432 |
+
param joints: [num_joints, 3]
|
| 433 |
+
param joints_vis: [num_joints, 3]
|
| 434 |
+
return: target, target_weight(1: visible, 0: invisible)
|
| 435 |
+
'''
|
| 436 |
+
num_joints = joints.shape[0]
|
| 437 |
+
device = joints.device
|
| 438 |
+
cur_device = torch.device(device.type, device.index)
|
| 439 |
+
if not hasattr(heatmap_size, '__len__'):
|
| 440 |
+
# width height
|
| 441 |
+
heatmap_size = [heatmap_size, heatmap_size]
|
| 442 |
+
assert len(heatmap_size) == 2
|
| 443 |
+
target_weight = np.ones((num_joints, 1), dtype=np.float32)
|
| 444 |
+
if joints_vis is not None:
|
| 445 |
+
target_weight[:, 0] = joints_vis[:, 0]
|
| 446 |
+
target = torch.zeros((num_joints, heatmap_size[1], heatmap_size[0]),
|
| 447 |
+
dtype=torch.float32,
|
| 448 |
+
device=cur_device)
|
| 449 |
+
|
| 450 |
+
tmp_size = sigma * 3
|
| 451 |
+
|
| 452 |
+
for joint_id in range(num_joints):
|
| 453 |
+
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5)
|
| 454 |
+
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5)
|
| 455 |
+
# Check that any part of the gaussian is in-bounds
|
| 456 |
+
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
|
| 457 |
+
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
|
| 458 |
+
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \
|
| 459 |
+
or br[0] < 0 or br[1] < 0:
|
| 460 |
+
# If not, just return the image as is
|
| 461 |
+
target_weight[joint_id] = 0
|
| 462 |
+
continue
|
| 463 |
+
|
| 464 |
+
# # Generate gaussian
|
| 465 |
+
size = 2 * tmp_size + 1
|
| 466 |
+
# x = np.arange(0, size, 1, np.float32)
|
| 467 |
+
# y = x[:, np.newaxis]
|
| 468 |
+
# x0 = y0 = size // 2
|
| 469 |
+
# # The gaussian is not normalized, we want the center value to equal 1
|
| 470 |
+
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
|
| 471 |
+
# g = torch.from_numpy(g.astype(np.float32))
|
| 472 |
+
|
| 473 |
+
x = torch.arange(0, size, dtype=torch.float32, device=cur_device)
|
| 474 |
+
y = x.unsqueeze(-1)
|
| 475 |
+
x0 = y0 = size // 2
|
| 476 |
+
# The gaussian is not normalized, we want the center value to equal 1
|
| 477 |
+
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
|
| 478 |
+
|
| 479 |
+
# Usable gaussian range
|
| 480 |
+
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
|
| 481 |
+
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
|
| 482 |
+
# Image range
|
| 483 |
+
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
|
| 484 |
+
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
|
| 485 |
+
|
| 486 |
+
v = target_weight[joint_id]
|
| 487 |
+
if v > 0.5:
|
| 488 |
+
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
|
| 489 |
+
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
|
| 490 |
+
|
| 491 |
+
return target, target_weight
|