Spaces:
Build error
Build error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
from lib.common.seg3d_lossless import Seg3dLossless | |
from lib.dataset.Evaluator import Evaluator | |
from lib.net import HGPIFuNet | |
from lib.common.train_util import * | |
from lib.common.render import Render | |
from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility | |
import torch | |
import lib.smplx as smplx | |
import numpy as np | |
from torch import nn | |
from skimage.transform import resize | |
import pytorch_lightning as pl | |
torch.backends.cudnn.benchmark = True | |
class ICON(pl.LightningModule): | |
def __init__(self, cfg): | |
super(ICON, self).__init__() | |
self.cfg = cfg | |
self.batch_size = self.cfg.batch_size | |
self.lr_G = self.cfg.lr_G | |
self.use_sdf = cfg.sdf | |
self.prior_type = cfg.net.prior_type | |
self.mcube_res = cfg.mcube_res | |
self.clean_mesh_flag = cfg.clean_mesh | |
self.netG = HGPIFuNet( | |
self.cfg, | |
self.cfg.projection_mode, | |
error_term=nn.SmoothL1Loss() if self.use_sdf else nn.MSELoss(), | |
) | |
self.evaluator = Evaluator( | |
device=torch.device(f"cuda:{self.cfg.gpus[0]}")) | |
self.resolutions = (np.logspace( | |
start=5, | |
stop=np.log2(self.mcube_res), | |
base=2, | |
num=int(np.log2(self.mcube_res) - 4), | |
endpoint=True, | |
) + 1.0) | |
self.resolutions = self.resolutions.astype(np.int16).tolist() | |
self.base_keys = ["smpl_verts", "smpl_faces"] | |
self.feat_names = self.cfg.net.smpl_feats | |
self.icon_keys = self.base_keys + [ | |
f"smpl_{feat_name}" for feat_name in self.feat_names | |
] | |
self.keypoint_keys = self.base_keys + [ | |
f"smpl_{feat_name}" for feat_name in self.feat_names | |
] | |
self.pamir_keys = [ | |
"voxel_verts", "voxel_faces", "pad_v_num", "pad_f_num" | |
] | |
self.pifu_keys = [] | |
self.reconEngine = Seg3dLossless( | |
query_func=query_func, | |
b_min=[[-1.0, 1.0, -1.0]], | |
b_max=[[1.0, -1.0, 1.0]], | |
resolutions=self.resolutions, | |
align_corners=True, | |
balance_value=0.50, | |
device=torch.device(f"cuda:{self.cfg.test_gpus[0]}"), | |
visualize=False, | |
debug=False, | |
use_cuda_impl=False, | |
faster=True, | |
) | |
self.render = Render( | |
size=512, device=torch.device(f"cuda:{self.cfg.test_gpus[0]}")) | |
self.smpl_data = SMPLX() | |
self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create( | |
self.smpl_data.model_dir, | |
kid_template_path=osp.join( | |
osp.realpath(self.smpl_data.model_dir), | |
f"{smpl_type}/{smpl_type}_kid_template.npy", | |
), | |
model_type=smpl_type, | |
gender=gender, | |
age=age, | |
v_template=v_template, | |
use_face_contour=False, | |
ext="pkl", | |
) | |
self.in_geo = [item[0] for item in cfg.net.in_geo] | |
self.in_nml = [item[0] for item in cfg.net.in_nml] | |
self.in_geo_dim = [item[1] for item in cfg.net.in_geo] | |
self.in_total = self.in_geo + self.in_nml | |
self.smpl_dim = cfg.net.smpl_dim | |
self.export_dir = None | |
self.result_eval = {} | |
def get_progress_bar_dict(self): | |
tqdm_dict = super().get_progress_bar_dict() | |
if "v_num" in tqdm_dict: | |
del tqdm_dict["v_num"] | |
return tqdm_dict | |
# Training related | |
def configure_optimizers(self): | |
# set optimizer | |
weight_decay = self.cfg.weight_decay | |
momentum = self.cfg.momentum | |
optim_params_G = [{ | |
"params": self.netG.if_regressor.parameters(), | |
"lr": self.lr_G | |
}] | |
if self.cfg.net.use_filter: | |
optim_params_G.append({ | |
"params": self.netG.F_filter.parameters(), | |
"lr": self.lr_G | |
}) | |
if self.cfg.net.prior_type == "pamir": | |
optim_params_G.append({ | |
"params": self.netG.ve.parameters(), | |
"lr": self.lr_G | |
}) | |
if self.cfg.optim == "Adadelta": | |
optimizer_G = torch.optim.Adadelta(optim_params_G, | |
lr=self.lr_G, | |
weight_decay=weight_decay) | |
elif self.cfg.optim == "Adam": | |
optimizer_G = torch.optim.Adam(optim_params_G, | |
lr=self.lr_G, | |
weight_decay=weight_decay) | |
elif self.cfg.optim == "RMSprop": | |
optimizer_G = torch.optim.RMSprop( | |
optim_params_G, | |
lr=self.lr_G, | |
weight_decay=weight_decay, | |
momentum=momentum, | |
) | |
else: | |
raise NotImplementedError | |
# set scheduler | |
scheduler_G = torch.optim.lr_scheduler.MultiStepLR( | |
optimizer_G, milestones=self.cfg.schedule, gamma=self.cfg.gamma) | |
return [optimizer_G], [scheduler_G] | |
def training_step(self, batch, batch_idx): | |
if not self.cfg.fast_dev: | |
export_cfg(self.logger, self.cfg) | |
self.netG.train() | |
in_tensor_dict = { | |
"sample": batch["samples_geo"].permute(0, 2, 1), | |
"calib": batch["calib"], | |
"label": batch["labels_geo"].unsqueeze(1), | |
} | |
for name in self.in_total: | |
in_tensor_dict.update({name: batch[name]}) | |
in_tensor_dict.update({ | |
k: batch[k] if k in batch.keys() else None | |
for k in getattr(self, f"{self.prior_type}_keys") | |
}) | |
preds_G, error_G = self.netG(in_tensor_dict) | |
acc, iou, prec, recall = self.evaluator.calc_acc( | |
preds_G.flatten(), | |
in_tensor_dict["label"].flatten(), | |
0.5, | |
use_sdf=self.cfg.sdf, | |
) | |
# metrics processing | |
metrics_log = { | |
"train_loss": error_G.item(), | |
"train_acc": acc.item(), | |
"train_iou": iou.item(), | |
"train_prec": prec.item(), | |
"train_recall": recall.item(), | |
} | |
tf_log = tf_log_convert(metrics_log) | |
bar_log = bar_log_convert(metrics_log) | |
if batch_idx % int(self.cfg.freq_show_train) == 0: | |
with torch.no_grad(): | |
self.render_func(in_tensor_dict, dataset="train") | |
metrics_return = { | |
k.replace("train_", ""): torch.tensor(v) | |
for k, v in metrics_log.items() | |
} | |
metrics_return.update({ | |
"loss": error_G, | |
"log": tf_log, | |
"progress_bar": bar_log | |
}) | |
return metrics_return | |
def training_epoch_end(self, outputs): | |
if [] in outputs: | |
outputs = outputs[0] | |
# metrics processing | |
metrics_log = { | |
"train_avgloss": batch_mean(outputs, "loss"), | |
"train_avgiou": batch_mean(outputs, "iou"), | |
"train_avgprec": batch_mean(outputs, "prec"), | |
"train_avgrecall": batch_mean(outputs, "recall"), | |
"train_avgacc": batch_mean(outputs, "acc"), | |
} | |
tf_log = tf_log_convert(metrics_log) | |
return {"log": tf_log} | |
def validation_step(self, batch, batch_idx): | |
self.netG.eval() | |
self.netG.training = False | |
in_tensor_dict = { | |
"sample": batch["samples_geo"].permute(0, 2, 1), | |
"calib": batch["calib"], | |
"label": batch["labels_geo"].unsqueeze(1), | |
} | |
for name in self.in_total: | |
in_tensor_dict.update({name: batch[name]}) | |
in_tensor_dict.update({ | |
k: batch[k] if k in batch.keys() else None | |
for k in getattr(self, f"{self.prior_type}_keys") | |
}) | |
preds_G, error_G = self.netG(in_tensor_dict) | |
acc, iou, prec, recall = self.evaluator.calc_acc( | |
preds_G.flatten(), | |
in_tensor_dict["label"].flatten(), | |
0.5, | |
use_sdf=self.cfg.sdf, | |
) | |
if batch_idx % int(self.cfg.freq_show_val) == 0: | |
with torch.no_grad(): | |
self.render_func(in_tensor_dict, dataset="val", idx=batch_idx) | |
metrics_return = { | |
"val_loss": error_G, | |
"val_acc": acc, | |
"val_iou": iou, | |
"val_prec": prec, | |
"val_recall": recall, | |
} | |
return metrics_return | |
def validation_epoch_end(self, outputs): | |
# metrics processing | |
metrics_log = { | |
"val_avgloss": batch_mean(outputs, "val_loss"), | |
"val_avgacc": batch_mean(outputs, "val_acc"), | |
"val_avgiou": batch_mean(outputs, "val_iou"), | |
"val_avgprec": batch_mean(outputs, "val_prec"), | |
"val_avgrecall": batch_mean(outputs, "val_recall"), | |
} | |
tf_log = tf_log_convert(metrics_log) | |
return {"log": tf_log} | |
def compute_vis_cmap(self, smpl_type, smpl_verts, smpl_faces): | |
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1) | |
smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long()) | |
smpl_cmap = self.smpl_data.cmap_smpl_vids(smpl_type) | |
return { | |
"smpl_vis": smpl_vis.unsqueeze(0).to(self.device), | |
"smpl_cmap": smpl_cmap.unsqueeze(0).to(self.device), | |
"smpl_verts": smpl_verts.unsqueeze(0), | |
} | |
def optim_body(self, in_tensor_dict, batch): | |
smpl_model = self.get_smpl_model(batch["type"][0], batch["gender"][0], | |
batch["age"][0], None).to(self.device) | |
in_tensor_dict["smpl_faces"] = (torch.tensor( | |
smpl_model.faces.astype(np.int)).long().unsqueeze(0).to( | |
self.device)) | |
# The optimizer and variables | |
optimed_pose = torch.tensor(batch["body_pose"][0], | |
device=self.device, | |
requires_grad=True) # [1,23,3,3] | |
optimed_trans = torch.tensor(batch["transl"][0], | |
device=self.device, | |
requires_grad=True) # [3] | |
optimed_betas = torch.tensor(batch["betas"][0], | |
device=self.device, | |
requires_grad=True) # [1,10] | |
optimed_orient = torch.tensor(batch["global_orient"][0], | |
device=self.device, | |
requires_grad=True) # [1,1,3,3] | |
optimizer_smpl = torch.optim.SGD( | |
[optimed_pose, optimed_trans, optimed_betas, optimed_orient], | |
lr=1e-3, | |
momentum=0.9, | |
) | |
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
optimizer_smpl, | |
mode="min", | |
factor=0.5, | |
verbose=0, | |
min_lr=1e-5, | |
patience=5) | |
loop_smpl = range(50) | |
for i in loop_smpl: | |
optimizer_smpl.zero_grad() | |
# prior_loss, optimed_pose = dataset.vposer_prior(optimed_pose) | |
smpl_out = smpl_model( | |
betas=optimed_betas, | |
body_pose=optimed_pose, | |
global_orient=optimed_orient, | |
transl=optimed_trans, | |
return_verts=True, | |
) | |
smpl_verts = smpl_out.vertices[0] * 100.0 | |
smpl_verts = projection(smpl_verts, | |
batch["calib"][0], | |
format="tensor") | |
smpl_verts[:, 1] *= -1 | |
# render optimized mesh (normal, T_normal, image [-1,1]) | |
self.render.load_meshes(smpl_verts, in_tensor_dict["smpl_faces"]) | |
( | |
in_tensor_dict["T_normal_F"], | |
in_tensor_dict["T_normal_B"], | |
) = self.render.get_rgb_image() | |
T_mask_F, T_mask_B = self.render.get_silhouette_image() | |
with torch.no_grad(): | |
( | |
in_tensor_dict["normal_F"], | |
in_tensor_dict["normal_B"], | |
) = self.netG.normal_filter(in_tensor_dict) | |
# mask = torch.abs(in_tensor['T_normal_F']).sum(dim=0, keepdims=True) > 0.0 | |
diff_F_smpl = torch.abs(in_tensor_dict["T_normal_F"] - | |
in_tensor_dict["normal_F"]) | |
diff_B_smpl = torch.abs(in_tensor_dict["T_normal_B"] - | |
in_tensor_dict["normal_B"]) | |
loss = (diff_F_smpl + diff_B_smpl).mean() | |
# silhouette loss | |
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0] | |
gt_arr = torch.cat( | |
[in_tensor_dict["normal_F"][0], in_tensor_dict["normal_B"][0]], | |
dim=2).permute(1, 2, 0) | |
gt_arr = ((gt_arr + 1.0) * 0.5).to(self.device) | |
bg_color = (torch.Tensor( | |
[0.5, 0.5, 0.5]).unsqueeze(0).unsqueeze(0).to(self.device)) | |
gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float() | |
loss += torch.abs(smpl_arr - gt_arr).mean() | |
# Image.fromarray(((in_tensor_dict['T_normal_F'][0].permute(1,2,0)+1.0)*0.5*255.0).detach().cpu().numpy().astype(np.uint8)).show() | |
# loop_smpl.set_description(f"smpl = {loss:.3f}") | |
loss.backward(retain_graph=True) | |
optimizer_smpl.step() | |
scheduler_smpl.step(loss) | |
in_tensor_dict["smpl_verts"] = smpl_verts.unsqueeze(0) | |
in_tensor_dict.update( | |
self.compute_vis_cmap( | |
batch["type"][0], | |
in_tensor_dict["smpl_verts"][0], | |
in_tensor_dict["smpl_faces"][0], | |
)) | |
features, inter = self.netG.filter(in_tensor_dict, return_inter=True) | |
return features, inter, in_tensor_dict | |
def optim_cloth(self, verts_pr, faces_pr, inter): | |
# convert from GT to SDF | |
verts_pr -= (self.resolutions[-1] - 1) / 2.0 | |
verts_pr /= (self.resolutions[-1] - 1) / 2.0 | |
losses = { | |
"cloth": { | |
"weight": 5.0, | |
"value": 0.0 | |
}, | |
"edge": { | |
"weight": 100.0, | |
"value": 0.0 | |
}, | |
"normal": { | |
"weight": 0.2, | |
"value": 0.0 | |
}, | |
"laplacian": { | |
"weight": 100.0, | |
"value": 0.0 | |
}, | |
"smpl": { | |
"weight": 1.0, | |
"value": 0.0 | |
}, | |
"deform": { | |
"weight": 20.0, | |
"value": 0.0 | |
}, | |
} | |
deform_verts = torch.full(verts_pr.shape, | |
0.0, | |
device=self.device, | |
requires_grad=True) | |
optimizer_cloth = torch.optim.SGD([deform_verts], | |
lr=1e-1, | |
momentum=0.9) | |
scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
optimizer_cloth, | |
mode="min", | |
factor=0.1, | |
verbose=0, | |
min_lr=1e-3, | |
patience=5) | |
# cloth optimization | |
loop_cloth = range(100) | |
for i in loop_cloth: | |
optimizer_cloth.zero_grad() | |
self.render.load_meshes( | |
verts_pr.unsqueeze(0).to(self.device), | |
faces_pr.unsqueeze(0).to(self.device).long(), | |
deform_verts, | |
) | |
P_normal_F, P_normal_B = self.render.get_rgb_image() | |
update_mesh_shape_prior_losses(self.render.mesh, losses) | |
diff_F_cloth = torch.abs(P_normal_F[0] - inter[:3]) | |
diff_B_cloth = torch.abs(P_normal_B[0] - inter[3:]) | |
losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean() | |
losses["deform"]["value"] = torch.topk( | |
torch.abs(deform_verts.flatten()), 30)[0].mean() | |
# Weighted sum of the losses | |
cloth_loss = torch.tensor(0.0, device=self.device) | |
pbar_desc = "" | |
for k in losses.keys(): | |
if k != "smpl": | |
cloth_loss_per_cls = losses[k]["value"] * \ | |
losses[k]["weight"] | |
pbar_desc += f"{k}: {cloth_loss_per_cls:.3f} | " | |
cloth_loss += cloth_loss_per_cls | |
# loop_cloth.set_description(pbar_desc) | |
cloth_loss.backward(retain_graph=True) | |
optimizer_cloth.step() | |
scheduler_cloth.step(cloth_loss) | |
# convert from GT to SDF | |
deform_verts = deform_verts.flatten().detach() | |
deform_verts[torch.topk(torch.abs(deform_verts), | |
30)[1]] = deform_verts.mean() | |
deform_verts = deform_verts.view(-1, 3).cpu() | |
verts_pr += deform_verts | |
verts_pr *= (self.resolutions[-1] - 1) / 2.0 | |
verts_pr += (self.resolutions[-1] - 1) / 2.0 | |
return verts_pr | |
def test_step(self, batch, batch_idx): | |
self.netG.eval() | |
self.netG.training = False | |
in_tensor_dict = {} | |
# export paths | |
mesh_name = batch["subject"][0] | |
mesh_rot = batch["rotation"][0].item() | |
self.export_dir = osp.join(self.cfg.results_path, self.cfg.name, | |
"-".join(self.cfg.dataset.types), mesh_name) | |
os.makedirs(self.export_dir, exist_ok=True) | |
for name in self.in_total: | |
if name in batch.keys(): | |
in_tensor_dict.update({name: batch[name]}) | |
in_tensor_dict.update({ | |
k: batch[k] if k in batch.keys() else None | |
for k in getattr(self, f"{self.prior_type}_keys") | |
}) | |
if "T_normal_F" not in in_tensor_dict.keys( | |
) or "T_normal_B" not in in_tensor_dict.keys(): | |
# update the new T_normal_F/B | |
self.render.load_meshes( | |
batch["smpl_verts"] * | |
torch.tensor([1.0, -1.0, 1.0]).to(self.device), | |
batch["smpl_faces"]) | |
T_normal_F, T_noraml_B = self.render.get_rgb_image() | |
in_tensor_dict.update({ | |
'T_normal_F': T_normal_F, | |
'T_normal_B': T_noraml_B | |
}) | |
with torch.no_grad(): | |
features, inter = self.netG.filter(in_tensor_dict, | |
return_inter=True) | |
sdf = self.reconEngine(opt=self.cfg, | |
netG=self.netG, | |
features=features, | |
proj_matrix=None) | |
def tensor2arr(x): | |
return (x[0].permute(1, 2, 0).detach().cpu().numpy() + | |
1.0) * 0.5 * 255.0 | |
# save inter results | |
image = tensor2arr(in_tensor_dict["image"]) | |
smpl_F = tensor2arr(in_tensor_dict["T_normal_F"]) | |
smpl_B = tensor2arr(in_tensor_dict["T_normal_B"]) | |
image_inter = np.concatenate(self.tensor2image(512, inter[0]) + | |
[smpl_F, smpl_B, image], | |
axis=1) | |
Image.fromarray((image_inter).astype(np.uint8)).save( | |
osp.join(self.export_dir, f"{mesh_rot}_inter.png")) | |
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf) | |
if self.clean_mesh_flag: | |
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr) | |
verts_gt = batch["verts"][0] | |
faces_gt = batch["faces"][0] | |
self.result_eval.update({ | |
"verts_gt": verts_gt, | |
"faces_gt": faces_gt, | |
"verts_pr": verts_pr, | |
"faces_pr": faces_pr, | |
"recon_size": (self.resolutions[-1] - 1.0), | |
"calib": batch["calib"][0], | |
}) | |
self.evaluator.set_mesh(self.result_eval) | |
chamfer, p2s = self.evaluator.calculate_chamfer_p2s(num_samples=1000) | |
normal_consist = self.evaluator.calculate_normal_consist( | |
osp.join(self.export_dir, f"{mesh_rot}_nc.png")) | |
test_log = {"chamfer": chamfer, "p2s": p2s, "NC": normal_consist} | |
return test_log | |
def test_epoch_end(self, outputs): | |
# make_test_gif("/".join(self.export_dir.split("/")[:-2])) | |
accu_outputs = accumulate( | |
outputs, | |
rot_num=3, | |
split={ | |
"cape-easy": (0, 50), | |
"cape-hard": (50, 100) | |
}, | |
) | |
print(colored(self.cfg.name, "green")) | |
print(colored(self.cfg.dataset.noise_scale, "green")) | |
self.logger.experiment.add_hparams( | |
hparam_dict={ | |
"lr_G": self.lr_G, | |
"bsize": self.batch_size | |
}, | |
metric_dict=accu_outputs, | |
) | |
np.save( | |
osp.join(self.export_dir, "../test_results.npy"), | |
accu_outputs, | |
allow_pickle=True, | |
) | |
return accu_outputs | |
def tensor2image(self, height, inter): | |
all = [] | |
for dim in self.in_geo_dim: | |
img = resize( | |
np.tile( | |
((inter[:dim].cpu().numpy() + 1.0) / 2.0 * | |
255.0).transpose(1, 2, 0), | |
(1, 1, int(3 / dim)), | |
), | |
(height, height), | |
anti_aliasing=True, | |
) | |
all.append(img) | |
inter = inter[dim:] | |
return all | |
def render_func(self, in_tensor_dict, dataset="title", idx=0): | |
for name in in_tensor_dict.keys(): | |
if in_tensor_dict[name] is not None: | |
in_tensor_dict[name] = in_tensor_dict[name][0:1] | |
self.netG.eval() | |
features, inter = self.netG.filter(in_tensor_dict, return_inter=True) | |
sdf = self.reconEngine(opt=self.cfg, | |
netG=self.netG, | |
features=features, | |
proj_matrix=None) | |
if sdf is not None: | |
render = self.reconEngine.display(sdf) | |
image_pred = np.flip(render[:, :, ::-1], axis=0) | |
height = image_pred.shape[0] | |
image_gt = resize( | |
((in_tensor_dict["image"].cpu().numpy()[0] + 1.0) / 2.0 * | |
255.0).transpose(1, 2, 0), | |
(height, height), | |
anti_aliasing=True, | |
) | |
image_inter = self.tensor2image(height, inter[0]) | |
image = np.concatenate([image_pred, image_gt] + image_inter, | |
axis=1) | |
step_id = self.global_step if dataset == "train" else self.global_step + idx | |
self.logger.experiment.add_image( | |
tag=f"Occupancy-{dataset}/{step_id}", | |
img_tensor=image.transpose(2, 0, 1), | |
global_step=step_id, | |
) | |
def test_single(self, batch): | |
self.netG.eval() | |
self.netG.training = False | |
in_tensor_dict = {} | |
for name in self.in_total: | |
if name in batch.keys(): | |
in_tensor_dict.update({name: batch[name]}) | |
in_tensor_dict.update({ | |
k: batch[k] if k in batch.keys() else None | |
for k in getattr(self, f"{self.prior_type}_keys") | |
}) | |
with torch.no_grad(): | |
features, inter = self.netG.filter(in_tensor_dict, | |
return_inter=True) | |
sdf = self.reconEngine(opt=self.cfg, | |
netG=self.netG, | |
features=features, | |
proj_matrix=None) | |
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf) | |
if self.clean_mesh_flag: | |
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr) | |
verts_pr -= (self.resolutions[-1] - 1) / 2.0 | |
verts_pr /= (self.resolutions[-1] - 1) / 2.0 | |
return verts_pr, faces_pr, inter |