File size: 5,249 Bytes
fe643f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import marimo
__generated_with = "0.11.9"
app = marimo.App()
@app.cell(hide_code=True)
def _():
import marimo as mo
import synalinks
synalinks.backend.clear_session()
return mo, synalinks
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Conversational Applications
Synalinks is designed to handle conversational applications as well as
query-based systems. In the case of a conversational applications, the
input data model is a list of chat messages, and the output an individual
chat message. The `Program` is in that case responsible of handling a
**single conversation turn**.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Now we can program our application like you would do with any `Program`. For this example,
we are going to make a very simple chatbot.
By default, if no data_model/schema is provided to the `Generator` it will output a `ChatMessage` like output.
If the data model is `None`, then you can enable streaming.
**Note:** Streaming is disabled during training and should only be used in the **last** `Generator` of your pipeline.
"""
)
return
@app.cell
async def _(synalinks):
from synalinks.backend import ChatMessage
from synalinks.backend import ChatRole
from synalinks.backend import ChatMessages
language_model = synalinks.LanguageModel(
model="openai/gpt-4o-mini",
)
_x0 = synalinks.Input(data_model=ChatMessages)
_x1 = await synalinks.Generator(
language_model=language_model,
prompt_template=synalinks.chat_prompt_template(),
streaming=False, # Marimo chat don't handle streaming yet
)(_x0)
program = synalinks.Program(
inputs=_x0,
outputs=_x1,
)
# Let's plot this program to understand it
synalinks.utils.plot_program(
program,
show_module_names=True,
show_trainable=True,
show_schemas=True,
)
return ChatMessage, ChatMessages, ChatRole, language_model, program
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Running the chatbot inside the notebook
In this example, we will show you how to run the conversational application inside this reactive notebook.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
openai_api_key = mo.ui.text_area(placeholder="Your OpenAI API key...").form()
openai_api_key
return
@app.cell(hide_code=True)
def _(mo, openai_api_key):
import os
mo.stop(not openai_api_key.value)
os.environ["OPENAI_API_KEY"] = openai_api_key.value
return
@app.cell(hide_code=True)
def _(ChatMessage, ChatMessages, ChatRole, mo, program):
mo.stop(not openai_api_key.value, mo.md("Provide your OpenAI API key"))
def cleanup_assistant_message(msg):
start_tok = '<span class="paragraph">'
end_tok = "</span>"
if msg.content.find(start_tok) > 0:
msg.content = msg.content[msg.content.find(start_tok) + len(start_tok) :]
if msg.content.find(end_tok, 1) > 0:
msg.content = msg.content[: msg.content.find(end_tok, 1)]
return msg
async def synalinks_program(messages, config):
chat_history = ChatMessages()
for msg in messages:
if msg.role == "user":
chat_history.messages.append(
ChatMessage(
role=ChatRole.USER,
content=msg.content,
)
)
else:
msg = cleanup_assistant_message(msg)
chat_history.messages.append(
ChatMessage(
role=ChatRole.ASSISTANT,
content=msg.content,
)
)
result = await program(chat_history)
return result.get("content")
chat = mo.ui.chat(synalinks_program)
chat
return chat, cleanup_assistant_message, synalinks_program
@app.cell(hide_code=True)
async def _(mo):
mo.md(
r"""
## Conclusion
In this notebook, we explored how Synalinks handle conversational applications.
You have now a solid understanding to create chatbots and conversational agents.
### Key Takeaways
- **Conversational Flow Management**: Synalinks effectively manages conversational
applications by handling inputs as a list of chat messages and generating
individual chat messages as outputs. This structure allows for efficient
processing of conversation turns.
- **Streaming and Real-Time Interaction**: Synalinks supports streaming for
real-time interactions, enhancing user engagement. However, streaming is
disabled during training and should be used only in the final `Generator`.
- **Customizable Prompt Templates**: The prompt templates can be tailored to fit
conversational contexts, guiding the language model to produce coherent and
relevant responses.
"""
)
return
if __name__ == "__main__":
app.run()
|