Upload 3 files
Browse files- app.py +232 -0
- requirements.txt +6 -0
- twitter_dataset.csv +0 -0
app.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
+
from textblob import TextBlob
|
7 |
+
from typing import List, Dict, Tuple
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from pathlib import Path
|
10 |
+
import logging
|
11 |
+
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class RecommendationWeights:
|
17 |
+
visibility: float
|
18 |
+
sentiment: float
|
19 |
+
popularity: float
|
20 |
+
|
21 |
+
class TweetPreprocessor:
|
22 |
+
def __init__(self, data_path: Path):
|
23 |
+
self.data = self._load_data(data_path)
|
24 |
+
self.model_name = "hamzab/roberta-fake-news-classification"
|
25 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
self.model, self.tokenizer = self._load_model()
|
27 |
+
|
28 |
+
def _load_model(self):
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained(self.model_name).to(self.device)
|
31 |
+
return model, tokenizer
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def _load_data(data_path: Path) -> pd.DataFrame:
|
35 |
+
try:
|
36 |
+
data = pd.read_csv(data_path)
|
37 |
+
required_columns = {'Text', 'Retweets', 'Likes'}
|
38 |
+
if not required_columns.issubset(data.columns):
|
39 |
+
raise ValueError(f"Missing required columns: {required_columns - set(data.columns)}")
|
40 |
+
return data
|
41 |
+
except Exception as e:
|
42 |
+
logger.error(f"Error loading data: {e}")
|
43 |
+
raise
|
44 |
+
|
45 |
+
def calculate_metrics(self) -> pd.DataFrame:
|
46 |
+
# Calculate sentiment
|
47 |
+
self.data['Sentiment'] = self.data['Text'].apply(lambda x: TextBlob(x).sentiment.polarity)
|
48 |
+
|
49 |
+
# Calculate popularity
|
50 |
+
self.data['Popularity'] = self.data['Retweets'] + self.data['Likes']
|
51 |
+
self.data['Popularity'] = (self.data['Popularity'] - self.data['Popularity'].mean()) / self.data['Popularity'].std()
|
52 |
+
self.data['Popularity'] = self.data['Popularity'] / self.data['Popularity'].abs().max()
|
53 |
+
|
54 |
+
# Calculate credibility using fake news model
|
55 |
+
batch_size = 100
|
56 |
+
predictions = []
|
57 |
+
for i in range(0, len(self.data), batch_size):
|
58 |
+
batch = self.data['Text'][i:i + batch_size].tolist()
|
59 |
+
inputs = self.tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
60 |
+
inputs = {key: val.to(self.device) for key, val in inputs.items()}
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = self.model(**inputs)
|
63 |
+
predictions.extend(outputs.logits.argmax(dim=1).cpu().numpy())
|
64 |
+
|
65 |
+
self.data['Credibility'] = [1 if pred == 1 else -1 for pred in predictions]
|
66 |
+
return self.data
|
67 |
+
|
68 |
+
class RecommendationSystem:
|
69 |
+
def __init__(self, data_path: Path):
|
70 |
+
self.preprocessor = TweetPreprocessor(data_path)
|
71 |
+
self.data = None
|
72 |
+
self.setup_system()
|
73 |
+
|
74 |
+
def setup_system(self):
|
75 |
+
self.data = self.preprocessor.calculate_metrics()
|
76 |
+
|
77 |
+
def get_recommendations(self, weights: RecommendationWeights, num_recommendations: int = 10) -> Dict:
|
78 |
+
if not self._validate_weights(weights):
|
79 |
+
return {"error": "Invalid weights provided"}
|
80 |
+
|
81 |
+
normalized_weights = self._normalize_weights(weights)
|
82 |
+
|
83 |
+
self.data['Final_Score'] = (
|
84 |
+
self.data['Credibility'] * normalized_weights.visibility +
|
85 |
+
self.data['Sentiment'] * normalized_weights.sentiment +
|
86 |
+
self.data['Popularity'] * normalized_weights.popularity
|
87 |
+
)
|
88 |
+
|
89 |
+
top_recommendations = (
|
90 |
+
self.data.nlargest(100, 'Final_Score')
|
91 |
+
.sample(num_recommendations)
|
92 |
+
)
|
93 |
+
|
94 |
+
return self._format_recommendations(top_recommendations)
|
95 |
+
|
96 |
+
def _format_recommendations(self, recommendations: pd.DataFrame) -> Dict:
|
97 |
+
formatted_results = []
|
98 |
+
for _, row in recommendations.iterrows():
|
99 |
+
score_details = {
|
100 |
+
"score": f"{row['Final_Score']:.2f}",
|
101 |
+
"credibility": "Reliable" if row['Credibility'] > 0 else "Uncertain",
|
102 |
+
"sentiment": self._get_sentiment_label(row['Sentiment']),
|
103 |
+
"popularity": f"{row['Popularity']:.2f}",
|
104 |
+
"engagement": f"Likes {row['Likes']} 路 Retweets {row['Retweets']}"
|
105 |
+
}
|
106 |
+
|
107 |
+
formatted_results.append({
|
108 |
+
"text": row['Text'],
|
109 |
+
"scores": score_details
|
110 |
+
})
|
111 |
+
|
112 |
+
return {
|
113 |
+
"recommendations": formatted_results,
|
114 |
+
"score_explanation": self._get_score_explanation()
|
115 |
+
}
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def _get_sentiment_label(sentiment_score: float) -> str:
|
119 |
+
if sentiment_score > 0.3:
|
120 |
+
return "Positive"
|
121 |
+
elif sentiment_score < -0.3:
|
122 |
+
return "Negative"
|
123 |
+
return "Neutral"
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def _validate_weights(weights: RecommendationWeights) -> bool:
|
127 |
+
return all(getattr(weights, field) >= 0 for field in weights.__dataclass_fields__)
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
def _normalize_weights(weights: RecommendationWeights) -> RecommendationWeights:
|
131 |
+
total = weights.visibility + weights.sentiment + weights.popularity
|
132 |
+
if total == 0:
|
133 |
+
return RecommendationWeights(1/3, 1/3, 1/3)
|
134 |
+
return RecommendationWeights(
|
135 |
+
visibility=weights.visibility / total,
|
136 |
+
sentiment=weights.sentiment / total,
|
137 |
+
popularity=weights.popularity / total
|
138 |
+
)
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def _get_score_explanation() -> Dict[str, str]:
|
142 |
+
return {
|
143 |
+
"Credibility": "Content reliability assessment",
|
144 |
+
"Sentiment": "Text emotional analysis result",
|
145 |
+
"Popularity": "Score based on likes and retweets"
|
146 |
+
}
|
147 |
+
|
148 |
+
def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.Interface:
|
149 |
+
with gr.Blocks(theme=gr.themes.Soft()) as interface:
|
150 |
+
gr.Markdown("""
|
151 |
+
# Tweet Recommendation System
|
152 |
+
Adjust weights to get personalized recommendations
|
153 |
+
|
154 |
+
Note: To protect user privacy, some tweet content has been redacted or anonymized.
|
155 |
+
""")
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
with gr.Column(scale=1):
|
159 |
+
visibility_weight = gr.Slider(0, 1, 0.5, label="Credibility Weight", info="Adjust importance of content credibility")
|
160 |
+
sentiment_weight = gr.Slider(0, 1, 0.3, label="Sentiment Weight", info="Adjust importance of emotional tone")
|
161 |
+
popularity_weight = gr.Slider(0, 1, 0.2, label="Popularity Weight", info="Adjust importance of engagement metrics")
|
162 |
+
submit_btn = gr.Button("Get Recommendations", variant="primary")
|
163 |
+
|
164 |
+
with gr.Column(scale=2):
|
165 |
+
output_html = gr.HTML()
|
166 |
+
|
167 |
+
def format_recommendations(raw_recommendations):
|
168 |
+
html = '<div style="font-family: sans-serif;">'
|
169 |
+
|
170 |
+
html += '''
|
171 |
+
<div style="margin-bottom: 20px; padding: 15px; background-color: #1a1a1a; color: white; border-radius: 8px;">
|
172 |
+
<h3 style="margin-top: 0;">Score Guide</h3>
|
173 |
+
<ul style="margin: 0;">
|
174 |
+
<li><strong>Credibility</strong>: Assessment of content reliability</li>
|
175 |
+
<li><strong>Sentiment</strong>: Text emotional analysis (Positive/Negative/Neutral)</li>
|
176 |
+
<li><strong>Popularity</strong>: Normalized score based on likes and retweets</li>
|
177 |
+
</ul>
|
178 |
+
</div>
|
179 |
+
'''
|
180 |
+
|
181 |
+
for i, rec in enumerate(raw_recommendations["recommendations"], 1):
|
182 |
+
scores = rec["scores"]
|
183 |
+
html += f'''
|
184 |
+
<div style="margin-bottom: 15px; padding: 15px; border: 1px solid #ddd; border-radius: 8px;">
|
185 |
+
<div style="margin-bottom: 10px; font-size: 1.1em;">{rec["text"]}</div>
|
186 |
+
<div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 0.9em;">
|
187 |
+
<span style="padding: 3px 8px; background-color: #1976d2; color: white; border-radius: 4px;">
|
188 |
+
Score: {scores["score"]}
|
189 |
+
</span>
|
190 |
+
<span style="padding: 3px 8px; background-color: #2e7d32; color: white; border-radius: 4px;">
|
191 |
+
Credibility: {scores["credibility"]}
|
192 |
+
</span>
|
193 |
+
<span style="padding: 3px 8px; background-color: #ed6c02; color: white; border-radius: 4px;">
|
194 |
+
Sentiment: {scores["sentiment"]}
|
195 |
+
</span>
|
196 |
+
<span style="padding: 3px 8px; background-color: #d32f2f; color: white; border-radius: 4px;">
|
197 |
+
Popularity: {scores["popularity"]}
|
198 |
+
</span>
|
199 |
+
<span style="padding: 3px 8px; background-color: #7b1fa2; color: white; border-radius: 4px;">
|
200 |
+
Engagement: {scores["engagement"]}
|
201 |
+
</span>
|
202 |
+
</div>
|
203 |
+
</div>
|
204 |
+
'''
|
205 |
+
html += '</div>'
|
206 |
+
return html
|
207 |
+
|
208 |
+
def get_recommendations_with_weights(v, s, p):
|
209 |
+
weights = RecommendationWeights(v, s, p)
|
210 |
+
return format_recommendations(recommendation_system.get_recommendations(weights))
|
211 |
+
|
212 |
+
submit_btn.click(
|
213 |
+
fn=get_recommendations_with_weights,
|
214 |
+
inputs=[visibility_weight, sentiment_weight, popularity_weight],
|
215 |
+
outputs=output_html
|
216 |
+
)
|
217 |
+
|
218 |
+
return interface
|
219 |
+
|
220 |
+
def main():
|
221 |
+
try:
|
222 |
+
recommendation_system = RecommendationSystem(
|
223 |
+
data_path=Path('twitter_dataset.csv')
|
224 |
+
)
|
225 |
+
interface = create_gradio_interface(recommendation_system)
|
226 |
+
interface.launch()
|
227 |
+
except Exception as e:
|
228 |
+
logger.error(f"Application failed to start: {e}")
|
229 |
+
raise
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
pandas
|
5 |
+
numpy
|
6 |
+
textblob
|
twitter_dataset.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|