File size: 3,157 Bytes
efc4793 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
import pandas as pd
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from textblob import TextBlob
import os
from huggingface_hub import login
# Get the Hugging Face API token from the environment variable
hf_token = os.getenv("pasavectoi")
login(hf_token)
# Load the dataset from the local file
data = pd.read_csv('twitter_dataset.csv').head(1000)
# Calculate sentiment polarity and popularity
data['Sentiment'] = data['Text'].apply(lambda x: TextBlob(x).sentiment.polarity)
data['Popularity'] = data['Retweets'] + data['Likes']
data['Popularity'] = (data['Popularity'] - data['Popularity'].mean()) / data['Popularity'].std()
data['Popularity'] = data['Popularity'] / data['Popularity'].abs().max()
# Load the fake news classification model
model_name = "hamzab/roberta-fake-news-classification"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Process tweets in batches to avoid memory issues
batch_size = 100
predictions = []
for i in range(0, len(data), batch_size):
batch = data['Text'][i:i + batch_size].tolist()
inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {key: val.to(device) for key, val in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
predictions.extend(outputs.logits.argmax(dim=1).cpu().numpy())
data['Fake_News_Prediction'] = predictions
data['Credibility'] = data['Fake_News_Prediction'].apply(lambda x: 1 if x == 1 else -1)
# Define the prediction and recommendation function
def predict_and_recommend(title, text, visibility_weight, sentiment_weight, popularity_weight):
# Adjust weights and calculate the final score
total_weight = visibility_weight + sentiment_weight + popularity_weight
visibility_weight /= total_weight
sentiment_weight /= total_weight
popularity_weight /= total_weight
# Update final visibility score with user-defined weights
data['User_Final_Visibility_Score'] = (
data['Credibility'] * visibility_weight +
data['Sentiment'] * sentiment_weight +
data['Popularity'] * popularity_weight
)
# Sort and randomly sample 10 recommendations
top_100_data = data.nlargest(100, 'User_Final_Visibility_Score')
recommended_data = top_100_data.sample(10)
return recommended_data[['Text', 'User_Final_Visibility_Score']]
# Set up Gradio interface
iface = gr.Interface(
fn=predict_and_recommend,
inputs=[
gr.Textbox(label="Title"),
gr.Textbox(label="Text", lines=10),
gr.Slider(0, 1, 0.5, label="Visibility Weight"),
gr.Slider(0, 1, 0.3, label="Sentiment Weight"),
gr.Slider(0, 1, 0.2, label="Popularity Weight")
],
outputs="dataframe",
title="Customizable Fake News Recommendation System",
description="Adjust weights to receive customized tweet recommendations based on visibility, sentiment, and popularity."
)
iface.launch()
|