File size: 18,488 Bytes
5d87992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Copyright Niantic 2021. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the ManyDepth licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.

import os
os.environ["MKL_NUM_THREADS"] = "1"  # noqa F402
os.environ["NUMEXPR_NUM_THREADS"] = "1"  # noqa F402
os.environ["OMP_NUM_THREADS"] = "1"  # noqa F402

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torch.utils.model_zoo as model_zoo


class BackprojectDepth(nn.Module):
    """Layer to transform a depth image into a point cloud
    """

    def __init__(self, batch_size, height, width):
        super(BackprojectDepth, self).__init__()

        self.batch_size = batch_size
        self.height = height
        self.width = width

        meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
        self.id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
        self.id_coords = nn.Parameter(torch.from_numpy(self.id_coords),
                                      requires_grad=False)

        self.ones = nn.Parameter(torch.ones(self.batch_size, 1, self.height * self.width),
                                 requires_grad=False)

        self.pix_coords = torch.unsqueeze(torch.stack(
            [self.id_coords[0].view(-1), self.id_coords[1].view(-1)], 0), 0)
        self.pix_coords = self.pix_coords.repeat(batch_size, 1, 1)
        self.pix_coords = nn.Parameter(torch.cat([self.pix_coords, self.ones], 1),
                                       requires_grad=False)

    def forward(self, depth, inv_K):
        cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords)
        cam_points = depth.view(self.batch_size, 1, -1) * cam_points
        cam_points = torch.cat([cam_points, self.ones], 1)

        return cam_points


class Project3D(nn.Module):
    """Layer which projects 3D points into a camera with intrinsics K and at position T
    """

    def __init__(self, batch_size, height, width, eps=1e-7):
        super(Project3D, self).__init__()

        self.batch_size = batch_size
        self.height = height
        self.width = width
        self.eps = eps

    def forward(self, points, K, T):
        P = torch.matmul(K, T)[:, :3, :]

        cam_points = torch.matmul(P, points)

        pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
        pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
        pix_coords = pix_coords.permute(0, 2, 3, 1)
        pix_coords[..., 0] /= self.width - 1
        pix_coords[..., 1] /= self.height - 1
        pix_coords = (pix_coords - 0.5) * 2
        return pix_coords

class ResNetMultiImageInput(models.ResNet):
    """Constructs a resnet model with varying number of input images.
    Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
    """

    def __init__(self, block, layers, num_classes=1000, num_input_images=1):
        super(ResNetMultiImageInput, self).__init__(block, layers)
        self.inplanes = 64
        self.conv1 = nn.Conv2d(
            num_input_images * 3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)


def resnet_multiimage_input(num_layers, pretrained=False, num_input_images=1):
    """Constructs a ResNet model.
    Args:
        num_layers (int): Number of resnet layers. Must be 18 or 50
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        num_input_images (int): Number of frames stacked as input
    """
    assert num_layers in [18, 50], "Can only run with 18 or 50 layer resnet"
    blocks = {18: [2, 2, 2, 2], 50: [3, 4, 6, 3]}[num_layers]
    block_type = {18: models.resnet.BasicBlock, 50: models.resnet.Bottleneck}[num_layers]
    model = ResNetMultiImageInput(block_type, blocks, num_input_images=num_input_images)

    if pretrained:
        loaded = model_zoo.load_url(models.resnet.model_urls['resnet{}'.format(num_layers)])
        loaded['conv1.weight'] = torch.cat(
            [loaded['conv1.weight']] * num_input_images, 1) / num_input_images
        model.load_state_dict(loaded)
    return model


class ResnetEncoderMatching(nn.Module):
    """Resnet encoder adapted to include a cost volume after the 2nd block.

    Setting adaptive_bins=True will recompute the depth bins used for matching upon each
    forward pass - this is required for training from monocular video as there is an unknown scale.
    """

    def __init__(self, num_layers, pretrained, input_height, input_width,
                 min_depth_bin=0.1, max_depth_bin=20.0, num_depth_bins=96,
                 adaptive_bins=False, depth_binning='linear'):

        super(ResnetEncoderMatching, self).__init__()

        self.adaptive_bins = adaptive_bins
        self.depth_binning = depth_binning
        self.set_missing_to_max = True

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])
        self.num_depth_bins = num_depth_bins
        # we build the cost volume at 1/4 resolution
        self.matching_height, self.matching_width = input_height // 4, input_width // 4

        self.is_cuda = False
        self.warp_depths = None
        self.depth_bins = None

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        encoder = resnets[num_layers](pretrained)
        self.layer0 = nn.Sequential(encoder.conv1,  encoder.bn1, encoder.relu)
        self.layer1 = nn.Sequential(encoder.maxpool,  encoder.layer1)
        self.layer2 = encoder.layer2
        self.layer3 = encoder.layer3
        self.layer4 = encoder.layer4

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4

        self.backprojector = BackprojectDepth(batch_size=self.num_depth_bins,
                                              height=self.matching_height,
                                              width=self.matching_width)
        self.projector = Project3D(batch_size=self.num_depth_bins,
                                   height=self.matching_height,
                                   width=self.matching_width)

        self.compute_depth_bins(min_depth_bin, max_depth_bin)

        self.prematching_conv = nn.Sequential(nn.Conv2d(64, out_channels=16,
                                                        kernel_size=1, stride=1, padding=0),
                                              nn.ReLU(inplace=True)
                                              )

        self.reduce_conv = nn.Sequential(nn.Conv2d(self.num_ch_enc[1] + self.num_depth_bins,
                                                   out_channels=self.num_ch_enc[1],
                                                   kernel_size=3, stride=1, padding=1),
                                         nn.ReLU(inplace=True)
                                         )

    def compute_depth_bins(self, min_depth_bin, max_depth_bin):
        """Compute the depths bins used to build the cost volume. Bins will depend upon
        self.depth_binning, to either be linear in depth (linear) or linear in inverse depth
        (inverse)"""

        if self.depth_binning == 'inverse':
            self.depth_bins = 1 / np.linspace(1 / max_depth_bin,
                                              1 / min_depth_bin,
                                              self.num_depth_bins)[::-1]  # maintain depth order

        elif self.depth_binning == 'linear':
            self.depth_bins = np.linspace(min_depth_bin, max_depth_bin, self.num_depth_bins)
        else:
            raise NotImplementedError
        self.depth_bins = torch.from_numpy(self.depth_bins).float()

        self.warp_depths = []
        for depth in self.depth_bins:
            depth = torch.ones((1, self.matching_height, self.matching_width)) * depth
            self.warp_depths.append(depth)
        self.warp_depths = torch.stack(self.warp_depths, 0).float()
        if self.is_cuda:
            self.warp_depths = self.warp_depths.cuda()

    def match_features(self, current_feats, lookup_feats, relative_poses, K, invK):
        """Compute a cost volume based on L1 difference between current_feats and lookup_feats.

        We backwards warp the lookup_feats into the current frame using the estimated relative
        pose, known intrinsics and using hypothesised depths self.warp_depths (which are either
        linear in depth or linear in inverse depth).

        If relative_pose == 0 then this indicates that the lookup frame is missing (i.e. we are
        at the start of a sequence), and so we skip it"""

        batch_cost_volume = []  # store all cost volumes of the batch
        cost_volume_masks = []  # store locations of '0's in cost volume for confidence

        for batch_idx in range(len(current_feats)):

            volume_shape = (self.num_depth_bins, self.matching_height, self.matching_width)
            cost_volume = torch.zeros(volume_shape, dtype=torch.float, device=current_feats.device)
            counts = torch.zeros(volume_shape, dtype=torch.float, device=current_feats.device)

            # select an item from batch of ref feats
            _lookup_feats = lookup_feats[batch_idx:batch_idx + 1]
            _lookup_poses = relative_poses[batch_idx:batch_idx + 1]

            _K = K[batch_idx:batch_idx + 1]
            _invK = invK[batch_idx:batch_idx + 1]
            world_points = self.backprojector(self.warp_depths, _invK)

            # loop through ref images adding to the current cost volume
            for lookup_idx in range(_lookup_feats.shape[1]):
                lookup_feat = _lookup_feats[:, lookup_idx]  # 1 x C x H x W
                lookup_pose = _lookup_poses[:, lookup_idx]

                # ignore missing images
                if lookup_pose.sum() == 0:
                    continue

                lookup_feat = lookup_feat.repeat([self.num_depth_bins, 1, 1, 1])
                pix_locs = self.projector(world_points, _K, lookup_pose)
                warped = F.grid_sample(lookup_feat, pix_locs, padding_mode='zeros', mode='bilinear',
                                       align_corners=True)

                # mask values landing outside the image (and near the border)
                # we want to ignore edge pixels of the lookup images and the current image
                # because of zero padding in ResNet
                # Masking of ref image border
                x_vals = (pix_locs[..., 0].detach() / 2 + 0.5) * (
                    self.matching_width - 1)  # convert from (-1, 1) to pixel values
                y_vals = (pix_locs[..., 1].detach() / 2 + 0.5) * (self.matching_height - 1)

                edge_mask = (x_vals >= 2.0) * (x_vals <= self.matching_width - 2) * \
                            (y_vals >= 2.0) * (y_vals <= self.matching_height - 2)
                edge_mask = edge_mask.float()

                # masking of current image
                current_mask = torch.zeros_like(edge_mask)
                current_mask[:, 2:-2, 2:-2] = 1.0
                edge_mask = edge_mask * current_mask

                diffs = torch.abs(warped - current_feats[batch_idx:batch_idx + 1]).mean(
                    1) * edge_mask

                # integrate into cost volume
                cost_volume = cost_volume + diffs
                counts = counts + (diffs > 0).float()
            # average over lookup images
            cost_volume = cost_volume / (counts + 1e-7)

            # if some missing values for a pixel location (i.e. some depths landed outside) then
            # set to max of existing values
            missing_val_mask = (cost_volume == 0).float()
            if self.set_missing_to_max:
                cost_volume = cost_volume * (1 - missing_val_mask) + \
                    cost_volume.max(0)[0].unsqueeze(0) * missing_val_mask
            batch_cost_volume.append(cost_volume)
            cost_volume_masks.append(missing_val_mask)

        batch_cost_volume = torch.stack(batch_cost_volume, 0)
        cost_volume_masks = torch.stack(cost_volume_masks, 0)

        return batch_cost_volume, cost_volume_masks

    def feature_extraction(self, image, return_all_feats=False):
        """ Run feature extraction on an image - first 2 blocks of ResNet"""

        image = (image - 0.45) / 0.225  # imagenet normalisation
        feats_0 = self.layer0(image)
        feats_1 = self.layer1(feats_0)

        if return_all_feats:
            return [feats_0, feats_1]
        else:
            return feats_1

    def indices_to_disparity(self, indices):
        """Convert cost volume indices to 1/depth for visualisation"""

        batch, height, width = indices.shape
        depth = self.depth_bins[indices.reshape(-1).cpu()]
        disp = 1 / depth.reshape((batch, height, width))
        return disp

    def compute_confidence_mask(self, cost_volume, num_bins_threshold=None):
        """ Returns a 'confidence' mask based on how many times a depth bin was observed"""

        if num_bins_threshold is None:
            num_bins_threshold = self.num_depth_bins
        confidence_mask = ((cost_volume > 0).sum(1) == num_bins_threshold).float()

        return confidence_mask

    def forward(self, current_image, lookup_images, poses, K, invK,
                min_depth_bin=None, max_depth_bin=None
                ):

        # feature extraction
        self.features = self.feature_extraction(current_image, return_all_feats=True)
        current_feats = self.features[-1]
        # print('current_feats:', current_feats.shape)

        # feature extraction on lookup images - disable gradients to save memory
        with torch.no_grad():
            if self.adaptive_bins:
                self.compute_depth_bins(min_depth_bin, max_depth_bin)

            batch_size, num_frames, chns, height, width = lookup_images.shape
            lookup_images = lookup_images.reshape(batch_size * num_frames, chns, height, width)
            lookup_feats = self.feature_extraction(lookup_images,
                                                   return_all_feats=False)
            _, chns, height, width = lookup_feats.shape
            lookup_feats = lookup_feats.reshape(batch_size, num_frames, chns, height, width)
            # print('lookup_feats:', lookup_feats.shape)

            # warp features to find cost volume
            cost_volume, missing_mask = \
                self.match_features(current_feats, lookup_feats, poses, K, invK)
            confidence_mask = self.compute_confidence_mask(cost_volume.detach() *
                                                           (1 - missing_mask.detach()))

        # for visualisation - ignore 0s in cost volume for minimum
        viz_cost_vol = cost_volume.clone().detach()
        viz_cost_vol[viz_cost_vol == 0] = 100
        mins, argmin = torch.min(viz_cost_vol, 1)
        lowest_cost = self.indices_to_disparity(argmin)

        # mask the cost volume based on the confidence
        cost_volume *= confidence_mask.unsqueeze(1)
        post_matching_feats = self.reduce_conv(torch.cat([self.features[-1], cost_volume], 1))
        # print('post_matching_feats:', post_matching_feats.shape)

        self.features.append(self.layer2(post_matching_feats))
        self.features.append(self.layer3(self.features[-1]))
        self.features.append(self.layer4(self.features[-1]))

        return self.features, lowest_cost, confidence_mask

    def cuda(self):
        super().cuda()
        self.backprojector.cuda()
        self.projector.cuda()
        self.is_cuda = True
        if self.warp_depths is not None:
            self.warp_depths = self.warp_depths.cuda()

    def cpu(self):
        super().cpu()
        self.backprojector.cpu()
        self.projector.cpu()
        self.is_cuda = False
        if self.warp_depths is not None:
            self.warp_depths = self.warp_depths.cpu()

    def to(self, device):
        if str(device) == 'cpu':
            self.cpu()
        elif str(device) == 'cuda':
            self.cuda()
        else:
            raise NotImplementedError


class ResnetEncoder(nn.Module):
    """Pytorch module for a resnet encoder
    """

    def __init__(self, num_layers, pretrained, num_input_images=1, **kwargs):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
        else:
            self.encoder = resnets[num_layers](pretrained)

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4

    def forward(self, input_image):
        self.features = []
        x = (input_image - 0.45) / 0.225
        x = self.encoder.conv1(x)
        x = self.encoder.bn1(x)
        self.features.append(self.encoder.relu(x))
        self.features.append(self.encoder.layer1(self.encoder.maxpool(self.features[-1])))
        self.features.append(self.encoder.layer2(self.features[-1]))
        self.features.append(self.encoder.layer3(self.features[-1]))
        self.features.append(self.encoder.layer4(self.features[-1]))

        return self.features