Spaces:
Runtime error
Runtime error
File size: 18,488 Bytes
5d87992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# Copyright Niantic 2021. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the ManyDepth licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
import os
os.environ["MKL_NUM_THREADS"] = "1" # noqa F402
os.environ["NUMEXPR_NUM_THREADS"] = "1" # noqa F402
os.environ["OMP_NUM_THREADS"] = "1" # noqa F402
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torch.utils.model_zoo as model_zoo
class BackprojectDepth(nn.Module):
"""Layer to transform a depth image into a point cloud
"""
def __init__(self, batch_size, height, width):
super(BackprojectDepth, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
self.id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
self.id_coords = nn.Parameter(torch.from_numpy(self.id_coords),
requires_grad=False)
self.ones = nn.Parameter(torch.ones(self.batch_size, 1, self.height * self.width),
requires_grad=False)
self.pix_coords = torch.unsqueeze(torch.stack(
[self.id_coords[0].view(-1), self.id_coords[1].view(-1)], 0), 0)
self.pix_coords = self.pix_coords.repeat(batch_size, 1, 1)
self.pix_coords = nn.Parameter(torch.cat([self.pix_coords, self.ones], 1),
requires_grad=False)
def forward(self, depth, inv_K):
cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords)
cam_points = depth.view(self.batch_size, 1, -1) * cam_points
cam_points = torch.cat([cam_points, self.ones], 1)
return cam_points
class Project3D(nn.Module):
"""Layer which projects 3D points into a camera with intrinsics K and at position T
"""
def __init__(self, batch_size, height, width, eps=1e-7):
super(Project3D, self).__init__()
self.batch_size = batch_size
self.height = height
self.width = width
self.eps = eps
def forward(self, points, K, T):
P = torch.matmul(K, T)[:, :3, :]
cam_points = torch.matmul(P, points)
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
pix_coords = pix_coords.permute(0, 2, 3, 1)
pix_coords[..., 0] /= self.width - 1
pix_coords[..., 1] /= self.height - 1
pix_coords = (pix_coords - 0.5) * 2
return pix_coords
class ResNetMultiImageInput(models.ResNet):
"""Constructs a resnet model with varying number of input images.
Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
"""
def __init__(self, block, layers, num_classes=1000, num_input_images=1):
super(ResNetMultiImageInput, self).__init__(block, layers)
self.inplanes = 64
self.conv1 = nn.Conv2d(
num_input_images * 3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def resnet_multiimage_input(num_layers, pretrained=False, num_input_images=1):
"""Constructs a ResNet model.
Args:
num_layers (int): Number of resnet layers. Must be 18 or 50
pretrained (bool): If True, returns a model pre-trained on ImageNet
num_input_images (int): Number of frames stacked as input
"""
assert num_layers in [18, 50], "Can only run with 18 or 50 layer resnet"
blocks = {18: [2, 2, 2, 2], 50: [3, 4, 6, 3]}[num_layers]
block_type = {18: models.resnet.BasicBlock, 50: models.resnet.Bottleneck}[num_layers]
model = ResNetMultiImageInput(block_type, blocks, num_input_images=num_input_images)
if pretrained:
loaded = model_zoo.load_url(models.resnet.model_urls['resnet{}'.format(num_layers)])
loaded['conv1.weight'] = torch.cat(
[loaded['conv1.weight']] * num_input_images, 1) / num_input_images
model.load_state_dict(loaded)
return model
class ResnetEncoderMatching(nn.Module):
"""Resnet encoder adapted to include a cost volume after the 2nd block.
Setting adaptive_bins=True will recompute the depth bins used for matching upon each
forward pass - this is required for training from monocular video as there is an unknown scale.
"""
def __init__(self, num_layers, pretrained, input_height, input_width,
min_depth_bin=0.1, max_depth_bin=20.0, num_depth_bins=96,
adaptive_bins=False, depth_binning='linear'):
super(ResnetEncoderMatching, self).__init__()
self.adaptive_bins = adaptive_bins
self.depth_binning = depth_binning
self.set_missing_to_max = True
self.num_ch_enc = np.array([64, 64, 128, 256, 512])
self.num_depth_bins = num_depth_bins
# we build the cost volume at 1/4 resolution
self.matching_height, self.matching_width = input_height // 4, input_width // 4
self.is_cuda = False
self.warp_depths = None
self.depth_bins = None
resnets = {18: models.resnet18,
34: models.resnet34,
50: models.resnet50,
101: models.resnet101,
152: models.resnet152}
if num_layers not in resnets:
raise ValueError("{} is not a valid number of resnet layers".format(num_layers))
encoder = resnets[num_layers](pretrained)
self.layer0 = nn.Sequential(encoder.conv1, encoder.bn1, encoder.relu)
self.layer1 = nn.Sequential(encoder.maxpool, encoder.layer1)
self.layer2 = encoder.layer2
self.layer3 = encoder.layer3
self.layer4 = encoder.layer4
if num_layers > 34:
self.num_ch_enc[1:] *= 4
self.backprojector = BackprojectDepth(batch_size=self.num_depth_bins,
height=self.matching_height,
width=self.matching_width)
self.projector = Project3D(batch_size=self.num_depth_bins,
height=self.matching_height,
width=self.matching_width)
self.compute_depth_bins(min_depth_bin, max_depth_bin)
self.prematching_conv = nn.Sequential(nn.Conv2d(64, out_channels=16,
kernel_size=1, stride=1, padding=0),
nn.ReLU(inplace=True)
)
self.reduce_conv = nn.Sequential(nn.Conv2d(self.num_ch_enc[1] + self.num_depth_bins,
out_channels=self.num_ch_enc[1],
kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True)
)
def compute_depth_bins(self, min_depth_bin, max_depth_bin):
"""Compute the depths bins used to build the cost volume. Bins will depend upon
self.depth_binning, to either be linear in depth (linear) or linear in inverse depth
(inverse)"""
if self.depth_binning == 'inverse':
self.depth_bins = 1 / np.linspace(1 / max_depth_bin,
1 / min_depth_bin,
self.num_depth_bins)[::-1] # maintain depth order
elif self.depth_binning == 'linear':
self.depth_bins = np.linspace(min_depth_bin, max_depth_bin, self.num_depth_bins)
else:
raise NotImplementedError
self.depth_bins = torch.from_numpy(self.depth_bins).float()
self.warp_depths = []
for depth in self.depth_bins:
depth = torch.ones((1, self.matching_height, self.matching_width)) * depth
self.warp_depths.append(depth)
self.warp_depths = torch.stack(self.warp_depths, 0).float()
if self.is_cuda:
self.warp_depths = self.warp_depths.cuda()
def match_features(self, current_feats, lookup_feats, relative_poses, K, invK):
"""Compute a cost volume based on L1 difference between current_feats and lookup_feats.
We backwards warp the lookup_feats into the current frame using the estimated relative
pose, known intrinsics and using hypothesised depths self.warp_depths (which are either
linear in depth or linear in inverse depth).
If relative_pose == 0 then this indicates that the lookup frame is missing (i.e. we are
at the start of a sequence), and so we skip it"""
batch_cost_volume = [] # store all cost volumes of the batch
cost_volume_masks = [] # store locations of '0's in cost volume for confidence
for batch_idx in range(len(current_feats)):
volume_shape = (self.num_depth_bins, self.matching_height, self.matching_width)
cost_volume = torch.zeros(volume_shape, dtype=torch.float, device=current_feats.device)
counts = torch.zeros(volume_shape, dtype=torch.float, device=current_feats.device)
# select an item from batch of ref feats
_lookup_feats = lookup_feats[batch_idx:batch_idx + 1]
_lookup_poses = relative_poses[batch_idx:batch_idx + 1]
_K = K[batch_idx:batch_idx + 1]
_invK = invK[batch_idx:batch_idx + 1]
world_points = self.backprojector(self.warp_depths, _invK)
# loop through ref images adding to the current cost volume
for lookup_idx in range(_lookup_feats.shape[1]):
lookup_feat = _lookup_feats[:, lookup_idx] # 1 x C x H x W
lookup_pose = _lookup_poses[:, lookup_idx]
# ignore missing images
if lookup_pose.sum() == 0:
continue
lookup_feat = lookup_feat.repeat([self.num_depth_bins, 1, 1, 1])
pix_locs = self.projector(world_points, _K, lookup_pose)
warped = F.grid_sample(lookup_feat, pix_locs, padding_mode='zeros', mode='bilinear',
align_corners=True)
# mask values landing outside the image (and near the border)
# we want to ignore edge pixels of the lookup images and the current image
# because of zero padding in ResNet
# Masking of ref image border
x_vals = (pix_locs[..., 0].detach() / 2 + 0.5) * (
self.matching_width - 1) # convert from (-1, 1) to pixel values
y_vals = (pix_locs[..., 1].detach() / 2 + 0.5) * (self.matching_height - 1)
edge_mask = (x_vals >= 2.0) * (x_vals <= self.matching_width - 2) * \
(y_vals >= 2.0) * (y_vals <= self.matching_height - 2)
edge_mask = edge_mask.float()
# masking of current image
current_mask = torch.zeros_like(edge_mask)
current_mask[:, 2:-2, 2:-2] = 1.0
edge_mask = edge_mask * current_mask
diffs = torch.abs(warped - current_feats[batch_idx:batch_idx + 1]).mean(
1) * edge_mask
# integrate into cost volume
cost_volume = cost_volume + diffs
counts = counts + (diffs > 0).float()
# average over lookup images
cost_volume = cost_volume / (counts + 1e-7)
# if some missing values for a pixel location (i.e. some depths landed outside) then
# set to max of existing values
missing_val_mask = (cost_volume == 0).float()
if self.set_missing_to_max:
cost_volume = cost_volume * (1 - missing_val_mask) + \
cost_volume.max(0)[0].unsqueeze(0) * missing_val_mask
batch_cost_volume.append(cost_volume)
cost_volume_masks.append(missing_val_mask)
batch_cost_volume = torch.stack(batch_cost_volume, 0)
cost_volume_masks = torch.stack(cost_volume_masks, 0)
return batch_cost_volume, cost_volume_masks
def feature_extraction(self, image, return_all_feats=False):
""" Run feature extraction on an image - first 2 blocks of ResNet"""
image = (image - 0.45) / 0.225 # imagenet normalisation
feats_0 = self.layer0(image)
feats_1 = self.layer1(feats_0)
if return_all_feats:
return [feats_0, feats_1]
else:
return feats_1
def indices_to_disparity(self, indices):
"""Convert cost volume indices to 1/depth for visualisation"""
batch, height, width = indices.shape
depth = self.depth_bins[indices.reshape(-1).cpu()]
disp = 1 / depth.reshape((batch, height, width))
return disp
def compute_confidence_mask(self, cost_volume, num_bins_threshold=None):
""" Returns a 'confidence' mask based on how many times a depth bin was observed"""
if num_bins_threshold is None:
num_bins_threshold = self.num_depth_bins
confidence_mask = ((cost_volume > 0).sum(1) == num_bins_threshold).float()
return confidence_mask
def forward(self, current_image, lookup_images, poses, K, invK,
min_depth_bin=None, max_depth_bin=None
):
# feature extraction
self.features = self.feature_extraction(current_image, return_all_feats=True)
current_feats = self.features[-1]
# print('current_feats:', current_feats.shape)
# feature extraction on lookup images - disable gradients to save memory
with torch.no_grad():
if self.adaptive_bins:
self.compute_depth_bins(min_depth_bin, max_depth_bin)
batch_size, num_frames, chns, height, width = lookup_images.shape
lookup_images = lookup_images.reshape(batch_size * num_frames, chns, height, width)
lookup_feats = self.feature_extraction(lookup_images,
return_all_feats=False)
_, chns, height, width = lookup_feats.shape
lookup_feats = lookup_feats.reshape(batch_size, num_frames, chns, height, width)
# print('lookup_feats:', lookup_feats.shape)
# warp features to find cost volume
cost_volume, missing_mask = \
self.match_features(current_feats, lookup_feats, poses, K, invK)
confidence_mask = self.compute_confidence_mask(cost_volume.detach() *
(1 - missing_mask.detach()))
# for visualisation - ignore 0s in cost volume for minimum
viz_cost_vol = cost_volume.clone().detach()
viz_cost_vol[viz_cost_vol == 0] = 100
mins, argmin = torch.min(viz_cost_vol, 1)
lowest_cost = self.indices_to_disparity(argmin)
# mask the cost volume based on the confidence
cost_volume *= confidence_mask.unsqueeze(1)
post_matching_feats = self.reduce_conv(torch.cat([self.features[-1], cost_volume], 1))
# print('post_matching_feats:', post_matching_feats.shape)
self.features.append(self.layer2(post_matching_feats))
self.features.append(self.layer3(self.features[-1]))
self.features.append(self.layer4(self.features[-1]))
return self.features, lowest_cost, confidence_mask
def cuda(self):
super().cuda()
self.backprojector.cuda()
self.projector.cuda()
self.is_cuda = True
if self.warp_depths is not None:
self.warp_depths = self.warp_depths.cuda()
def cpu(self):
super().cpu()
self.backprojector.cpu()
self.projector.cpu()
self.is_cuda = False
if self.warp_depths is not None:
self.warp_depths = self.warp_depths.cpu()
def to(self, device):
if str(device) == 'cpu':
self.cpu()
elif str(device) == 'cuda':
self.cuda()
else:
raise NotImplementedError
class ResnetEncoder(nn.Module):
"""Pytorch module for a resnet encoder
"""
def __init__(self, num_layers, pretrained, num_input_images=1, **kwargs):
super(ResnetEncoder, self).__init__()
self.num_ch_enc = np.array([64, 64, 128, 256, 512])
resnets = {18: models.resnet18,
34: models.resnet34,
50: models.resnet50,
101: models.resnet101,
152: models.resnet152}
if num_layers not in resnets:
raise ValueError("{} is not a valid number of resnet layers".format(num_layers))
if num_input_images > 1:
self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
else:
self.encoder = resnets[num_layers](pretrained)
if num_layers > 34:
self.num_ch_enc[1:] *= 4
def forward(self, input_image):
self.features = []
x = (input_image - 0.45) / 0.225
x = self.encoder.conv1(x)
x = self.encoder.bn1(x)
self.features.append(self.encoder.relu(x))
self.features.append(self.encoder.layer1(self.encoder.maxpool(self.features[-1])))
self.features.append(self.encoder.layer2(self.features[-1]))
self.features.append(self.encoder.layer3(self.features[-1]))
self.features.append(self.encoder.layer4(self.features[-1]))
return self.features
|