import cv2 import math import numpy as np from skimage import transform as trans def transform(data, center, output_size, scale, rotation): scale_ratio = scale rot = float(rotation) * np.pi / 180.0 # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) t1 = trans.SimilarityTransform(scale=scale_ratio) cx = center[0] * scale_ratio cy = center[1] * scale_ratio t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) t3 = trans.SimilarityTransform(rotation=rot) t4 = trans.SimilarityTransform(translation=(output_size / 2, output_size / 2)) t = t1 + t2 + t3 + t4 M = t.params[0:2] cropped = cv2.warpAffine(data, M, (output_size, output_size), borderValue=0.0) return cropped, M def trans_points2d(pts, M): new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) # print('new_pt', new_pt.shape, new_pt) new_pts[i] = new_pt[0:2] return new_pts def trans_points3d(pts, M): scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) # print(scale) new_pts = np.zeros(shape=pts.shape, dtype=np.float32) for i in range(pts.shape[0]): pt = pts[i] new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) new_pt = np.dot(M, new_pt) # print('new_pt', new_pt.shape, new_pt) new_pts[i][0:2] = new_pt[0:2] new_pts[i][2] = pts[i][2] * scale return new_pts def trans_points(pts, M): if pts.shape[1] == 2: return trans_points2d(pts, M) else: return trans_points3d(pts, M) def estimate_affine_matrix_3d23d(X, Y): ''' Using least-squares solution Args: X: [n, 3]. 3d points(fixed) Y: [n, 3]. corresponding 3d points(moving). Y = PX Returns: P_Affine: (3, 4). Affine camera matrix (the third row is [0, 0, 0, 1]). ''' X_homo = np.hstack((X, np.ones([X.shape[0], 1]))) # n x 4 P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4 return P def P2sRt(P): ''' decompositing camera matrix P Args: P: (3, 4). Affine Camera Matrix. Returns: s: scale factor. R: (3, 3). rotation matrix. t: (3,). translation. ''' t = P[:, 3] R1 = P[0:1, :3] R2 = P[1:2, :3] s = (np.linalg.norm(R1) + np.linalg.norm(R2)) / 2.0 r1 = R1 / np.linalg.norm(R1) r2 = R2 / np.linalg.norm(R2) r3 = np.cross(r1, r2) R = np.concatenate((r1, r2, r3), 0) return s, R, t def matrix2angle(R): ''' get three Euler angles from Rotation Matrix Args: R: (3,3). rotation matrix Returns: x: pitch y: yaw z: roll ''' sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) singular = sy < 1e-6 if not singular: x = math.atan2(R[2, 1], R[2, 2]) y = math.atan2(-R[2, 0], sy) z = math.atan2(R[1, 0], R[0, 0]) else: x = math.atan2(-R[1, 2], R[1, 1]) y = math.atan2(-R[2, 0], sy) z = 0 # rx, ry, rz = np.rad2deg(x), np.rad2deg(y), np.rad2deg(z) rx, ry, rz = x * 180 / np.pi, y * 180 / np.pi, z * 180 / np.pi return rx, ry, rz