Spaces:
Running
on
Zero
Running
on
Zero
Upload 5 files
Browse files
difpoint/dataset_process/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
difpoint/dataset_process/__pycache__/audio.cpython-310.pyc
ADDED
Binary file (4.61 kB). View file
|
|
difpoint/dataset_process/__pycache__/audio.cpython-38.pyc
ADDED
Binary file (4.65 kB). View file
|
|
difpoint/dataset_process/audio.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import librosa.filters
|
3 |
+
import numpy as np
|
4 |
+
# import tensorflow as tf
|
5 |
+
from scipy import signal
|
6 |
+
from scipy.io import wavfile
|
7 |
+
from difpoint.src.utils.hparams import hparams as hp
|
8 |
+
|
9 |
+
|
10 |
+
def load_wav(path, sr):
|
11 |
+
return librosa.core.load(path, sr=sr)[0]
|
12 |
+
|
13 |
+
|
14 |
+
def save_wav(wav, path, sr):
|
15 |
+
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
16 |
+
# proposed by @dsmiller
|
17 |
+
wavfile.write(path, sr, wav.astype(np.int16))
|
18 |
+
|
19 |
+
|
20 |
+
def save_wavenet_wav(wav, path, sr):
|
21 |
+
librosa.output.write_wav(path, wav, sr=sr)
|
22 |
+
|
23 |
+
|
24 |
+
def preemphasis(wav, k, preemphasize=True):
|
25 |
+
if preemphasize:
|
26 |
+
return signal.lfilter([1, -k], [1], wav)
|
27 |
+
return wav
|
28 |
+
|
29 |
+
|
30 |
+
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
31 |
+
if inv_preemphasize:
|
32 |
+
return signal.lfilter([1], [1, -k], wav)
|
33 |
+
return wav
|
34 |
+
|
35 |
+
|
36 |
+
def get_hop_size():
|
37 |
+
hop_size = hp.hop_size
|
38 |
+
if hop_size is None:
|
39 |
+
assert hp.frame_shift_ms is not None
|
40 |
+
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
|
41 |
+
return hop_size
|
42 |
+
|
43 |
+
|
44 |
+
def linearspectrogram(wav):
|
45 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
46 |
+
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
47 |
+
|
48 |
+
if hp.signal_normalization:
|
49 |
+
return _normalize(S)
|
50 |
+
return S
|
51 |
+
|
52 |
+
|
53 |
+
def melspectrogram(wav):
|
54 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
55 |
+
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
56 |
+
|
57 |
+
if hp.signal_normalization:
|
58 |
+
return _normalize(S)
|
59 |
+
return S
|
60 |
+
|
61 |
+
|
62 |
+
def _lws_processor():
|
63 |
+
import lws
|
64 |
+
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
|
65 |
+
|
66 |
+
|
67 |
+
def _stft(y):
|
68 |
+
if hp.use_lws:
|
69 |
+
return _lws_processor(hp).stft(y).T
|
70 |
+
else:
|
71 |
+
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
72 |
+
|
73 |
+
|
74 |
+
##########################################################
|
75 |
+
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
76 |
+
def num_frames(length, fsize, fshift):
|
77 |
+
"""Compute number of time frames of spectrogram
|
78 |
+
"""
|
79 |
+
pad = (fsize - fshift)
|
80 |
+
if length % fshift == 0:
|
81 |
+
M = (length + pad * 2 - fsize) // fshift + 1
|
82 |
+
else:
|
83 |
+
M = (length + pad * 2 - fsize) // fshift + 2
|
84 |
+
return M
|
85 |
+
|
86 |
+
|
87 |
+
def pad_lr(x, fsize, fshift):
|
88 |
+
"""Compute left and right padding
|
89 |
+
"""
|
90 |
+
M = num_frames(len(x), fsize, fshift)
|
91 |
+
pad = (fsize - fshift)
|
92 |
+
T = len(x) + 2 * pad
|
93 |
+
r = (M - 1) * fshift + fsize - T
|
94 |
+
return pad, pad + r
|
95 |
+
|
96 |
+
|
97 |
+
##########################################################
|
98 |
+
# Librosa correct padding
|
99 |
+
def librosa_pad_lr(x, fsize, fshift):
|
100 |
+
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
101 |
+
|
102 |
+
|
103 |
+
# Conversions
|
104 |
+
_mel_basis = None
|
105 |
+
|
106 |
+
|
107 |
+
def _linear_to_mel(spectogram):
|
108 |
+
global _mel_basis
|
109 |
+
if _mel_basis is None:
|
110 |
+
_mel_basis = _build_mel_basis()
|
111 |
+
return np.dot(_mel_basis, spectogram)
|
112 |
+
|
113 |
+
|
114 |
+
def _build_mel_basis():
|
115 |
+
assert hp.fmax <= hp.sample_rate // 2
|
116 |
+
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
|
117 |
+
fmin=hp.fmin, fmax=hp.fmax)
|
118 |
+
|
119 |
+
|
120 |
+
def _amp_to_db(x):
|
121 |
+
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
122 |
+
return 20 * np.log10(np.maximum(min_level, x))
|
123 |
+
|
124 |
+
|
125 |
+
def _db_to_amp(x):
|
126 |
+
return np.power(10.0, (x) * 0.05)
|
127 |
+
|
128 |
+
|
129 |
+
def _normalize(S):
|
130 |
+
if hp.allow_clipping_in_normalization:
|
131 |
+
if hp.symmetric_mels:
|
132 |
+
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
|
133 |
+
-hp.max_abs_value, hp.max_abs_value)
|
134 |
+
else:
|
135 |
+
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
|
136 |
+
|
137 |
+
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
|
138 |
+
if hp.symmetric_mels:
|
139 |
+
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
|
140 |
+
else:
|
141 |
+
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
|
142 |
+
|
143 |
+
|
144 |
+
def _denormalize(D):
|
145 |
+
if hp.allow_clipping_in_normalization:
|
146 |
+
if hp.symmetric_mels:
|
147 |
+
return (((np.clip(D, -hp.max_abs_value,
|
148 |
+
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
|
149 |
+
+ hp.min_level_db)
|
150 |
+
else:
|
151 |
+
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
152 |
+
|
153 |
+
if hp.symmetric_mels:
|
154 |
+
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
|
155 |
+
else:
|
156 |
+
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
difpoint/dataset_process/wav2lip.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
class Conv2d(nn.Module):
|
7 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs):
|
8 |
+
super().__init__(*args, **kwargs)
|
9 |
+
self.conv_block = nn.Sequential(
|
10 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
11 |
+
nn.BatchNorm2d(cout)
|
12 |
+
)
|
13 |
+
self.act = nn.ReLU()
|
14 |
+
self.residual = residual
|
15 |
+
self.use_act = use_act
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
out = self.conv_block(x)
|
19 |
+
if self.residual:
|
20 |
+
out += x
|
21 |
+
|
22 |
+
if self.use_act:
|
23 |
+
return self.act(out)
|
24 |
+
else:
|
25 |
+
return out
|
26 |
+
|
27 |
+
class AudioEncoder(nn.Module):
|
28 |
+
def __init__(self, wav2lip_checkpoint, device):
|
29 |
+
super(AudioEncoder, self).__init__()
|
30 |
+
|
31 |
+
self.audio_encoder = nn.Sequential(
|
32 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
33 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
34 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
35 |
+
|
36 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
37 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
38 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
39 |
+
|
40 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
41 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
42 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
43 |
+
|
44 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
45 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
46 |
+
|
47 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
48 |
+
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
49 |
+
|
50 |
+
#### load the pre-trained audio_encoder
|
51 |
+
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
|
52 |
+
state_dict = self.audio_encoder.state_dict()
|
53 |
+
|
54 |
+
for k,v in wav2lip_state_dict.items():
|
55 |
+
if 'audio_encoder' in k:
|
56 |
+
state_dict[k.replace('module.audio_encoder.', '')] = v
|
57 |
+
self.audio_encoder.load_state_dict(state_dict)
|
58 |
+
|
59 |
+
|
60 |
+
def forward(self, audio_sequences):
|
61 |
+
# audio_sequences = (B, T, 1, 80, 16)
|
62 |
+
B = audio_sequences.size(0)
|
63 |
+
|
64 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
65 |
+
|
66 |
+
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
|
67 |
+
dim = audio_embedding.shape[1]
|
68 |
+
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
|
69 |
+
|
70 |
+
return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
|
71 |
+
|
72 |
+
wav2lip_checkpoint='ckpts/wav2lip.pth'
|
73 |
+
wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda')
|
74 |
+
wav2lip_model.cuda()
|
75 |
+
wav2lip_model.eval()
|