YinuoGuo27 commited on
Commit
3b39935
·
verified ·
1 Parent(s): dfd657b

Upload 115 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. difpoint/src/__pycache__/live_portrait_pipeline.cpython-310.pyc +0 -0
  3. difpoint/src/__pycache__/live_portrait_wrapper.cpython-310.pyc +0 -0
  4. difpoint/src/config/__init__.py +0 -0
  5. difpoint/src/config/__pycache__/__init__.cpython-310.pyc +0 -0
  6. difpoint/src/config/__pycache__/argument_config.cpython-310.pyc +0 -0
  7. difpoint/src/config/__pycache__/base_config.cpython-310.pyc +0 -0
  8. difpoint/src/config/__pycache__/crop_config.cpython-310.pyc +0 -0
  9. difpoint/src/config/__pycache__/inference_config.cpython-310.pyc +0 -0
  10. difpoint/src/config/argument_config.py +48 -0
  11. difpoint/src/config/base_config.py +29 -0
  12. difpoint/src/config/crop_config.py +29 -0
  13. difpoint/src/config/inference_config.py +52 -0
  14. difpoint/src/config/models.yaml +43 -0
  15. difpoint/src/gradio_pipeline.py +117 -0
  16. difpoint/src/live_portrait_pipeline.py +285 -0
  17. difpoint/src/live_portrait_wrapper.py +318 -0
  18. difpoint/src/modules/__init__.py +0 -0
  19. difpoint/src/modules/__pycache__/__init__.cpython-310.pyc +0 -0
  20. difpoint/src/modules/__pycache__/appearance_feature_extractor.cpython-310.pyc +0 -0
  21. difpoint/src/modules/__pycache__/convnextv2.cpython-310.pyc +0 -0
  22. difpoint/src/modules/__pycache__/dense_motion.cpython-310.pyc +0 -0
  23. difpoint/src/modules/__pycache__/motion_extractor.cpython-310.pyc +0 -0
  24. difpoint/src/modules/__pycache__/spade_generator.cpython-310.pyc +0 -0
  25. difpoint/src/modules/__pycache__/stitching_retargeting_network.cpython-310.pyc +0 -0
  26. difpoint/src/modules/__pycache__/util.cpython-310.pyc +0 -0
  27. difpoint/src/modules/__pycache__/warping_network.cpython-310.pyc +0 -0
  28. difpoint/src/modules/appearance_feature_extractor.py +48 -0
  29. difpoint/src/modules/convnextv2.py +149 -0
  30. difpoint/src/modules/dense_motion.py +104 -0
  31. difpoint/src/modules/motion_extractor.py +35 -0
  32. difpoint/src/modules/spade_generator.py +59 -0
  33. difpoint/src/modules/stitching_retargeting_network.py +38 -0
  34. difpoint/src/modules/util.py +441 -0
  35. difpoint/src/modules/warping_network.py +77 -0
  36. difpoint/src/utils/__init__.py +0 -5
  37. difpoint/src/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  38. difpoint/src/utils/__pycache__/camera.cpython-310.pyc +0 -0
  39. difpoint/src/utils/__pycache__/crop.cpython-310.pyc +0 -0
  40. difpoint/src/utils/__pycache__/cropper.cpython-310.pyc +0 -0
  41. difpoint/src/utils/__pycache__/face_analysis_diy.cpython-310.pyc +0 -0
  42. difpoint/src/utils/__pycache__/helper.cpython-310.pyc +0 -0
  43. difpoint/src/utils/__pycache__/hparams.cpython-310.pyc +0 -0
  44. difpoint/src/utils/__pycache__/io.cpython-310.pyc +0 -0
  45. difpoint/src/utils/__pycache__/landmark_runner.cpython-310.pyc +0 -0
  46. difpoint/src/utils/__pycache__/retargeting_utils.cpython-310.pyc +0 -0
  47. difpoint/src/utils/__pycache__/rprint.cpython-310.pyc +0 -0
  48. difpoint/src/utils/__pycache__/timer.cpython-310.pyc +0 -0
  49. difpoint/src/utils/__pycache__/video.cpython-310.pyc +0 -0
  50. difpoint/src/utils/camera.py +73 -0
.gitattributes CHANGED
@@ -37,3 +37,4 @@ difpoint/assets/docs/inference.gif filter=lfs diff=lfs merge=lfs -text
37
  difpoint/assets/docs/showcase.gif filter=lfs diff=lfs merge=lfs -text
38
  difpoint/assets/docs/showcase2.gif filter=lfs diff=lfs merge=lfs -text
39
  src/utils/dependencies/insightface/data/images/t1.jpg filter=lfs diff=lfs merge=lfs -text
 
 
37
  difpoint/assets/docs/showcase.gif filter=lfs diff=lfs merge=lfs -text
38
  difpoint/assets/docs/showcase2.gif filter=lfs diff=lfs merge=lfs -text
39
  src/utils/dependencies/insightface/data/images/t1.jpg filter=lfs diff=lfs merge=lfs -text
40
+ difpoint/src/utils/dependencies/insightface/data/images/t1.jpg filter=lfs diff=lfs merge=lfs -text
difpoint/src/__pycache__/live_portrait_pipeline.cpython-310.pyc ADDED
Binary file (8.08 kB). View file
 
difpoint/src/__pycache__/live_portrait_wrapper.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
difpoint/src/config/__init__.py ADDED
File without changes
difpoint/src/config/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (137 Bytes). View file
 
difpoint/src/config/__pycache__/argument_config.cpython-310.pyc ADDED
Binary file (1.82 kB). View file
 
difpoint/src/config/__pycache__/base_config.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
difpoint/src/config/__pycache__/crop_config.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
difpoint/src/config/__pycache__/inference_config.cpython-310.pyc ADDED
Binary file (2.39 kB). View file
 
difpoint/src/config/argument_config.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ All configs for user
5
+ """
6
+
7
+ from dataclasses import dataclass
8
+ import tyro
9
+ from typing_extensions import Annotated
10
+ from typing import Optional
11
+ from .base_config import PrintableConfig, make_abs_path
12
+
13
+
14
+ @dataclass(repr=False) # use repr from PrintableConfig
15
+ class ArgumentConfig(PrintableConfig):
16
+ ########## input arguments ##########
17
+ source_image: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s6.jpg') # path to the source portrait
18
+ driving_info: Annotated[str, tyro.conf.arg(aliases=["-d"])] = make_abs_path('../../assets/examples/driving/d12.mp4') # path to driving video or template (.pkl format)
19
+ output_dir: Annotated[str, tyro.conf.arg(aliases=["-o"])] = 'animations/' # directory to save output video
20
+
21
+ ########## inference arguments ##########
22
+ flag_use_half_precision: bool = False # whether to use half precision (FP16). If black boxes appear, it might be due to GPU incompatibility; set to False.
23
+ flag_crop_driving_video: bool = False # whether to crop the driving video, if the given driving info is a video
24
+ device_id: int = 0 # gpu device id
25
+ flag_force_cpu: bool = False # force cpu inference, WIP!
26
+ flag_lip_zero: bool = False # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False
27
+ flag_eye_retargeting: bool = False # not recommend to be True, WIP
28
+ flag_lip_retargeting: bool = False # not recommend to be True, WIP
29
+ flag_stitching: bool = False # recommend to True if head movement is small, False if head movement is large
30
+ flag_relative_motion: bool = False # whether to use relative motion
31
+ flag_pasteback: bool = False # whether to paste-back/stitch the animated face cropping from the face-cropping space to the original image space
32
+ flag_do_crop: bool = False # whether to crop the source portrait to the face-cropping space
33
+ flag_do_rot: bool = False # whether to conduct the rotation when flag_do_crop is True
34
+
35
+ ########## crop arguments ##########
36
+ scale: float = 2.3 # the ratio of face area is smaller if scale is larger
37
+ vx_ratio: float = 0 # the ratio to move the face to left or right in cropping space
38
+ vy_ratio: float = -0.125 # the ratio to move the face to up or down in cropping space
39
+
40
+ scale_crop_video: float = 2.2 # scale factor for cropping video
41
+ vx_ratio_crop_video: float = 0. # adjust y offset
42
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
43
+
44
+ ########## gradio arguments ##########
45
+ server_port: Annotated[int, tyro.conf.arg(aliases=["-p"])] = 8890 # port for gradio server
46
+ share: bool = False # whether to share the server to public
47
+ server_name: Optional[str] = "127.0.0.1" # set the local server name, "0.0.0.0" to broadcast all
48
+ flag_do_torch_compile: bool = False # whether to use torch.compile to accelerate generation
difpoint/src/config/base_config.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ pretty printing class
5
+ """
6
+
7
+ from __future__ import annotations
8
+ import os.path as osp
9
+ from typing import Tuple
10
+
11
+
12
+ def make_abs_path(fn):
13
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
14
+
15
+
16
+ class PrintableConfig: # pylint: disable=too-few-public-methods
17
+ """Printable Config defining str function"""
18
+
19
+ def __repr__(self):
20
+ lines = [self.__class__.__name__ + ":"]
21
+ for key, val in vars(self).items():
22
+ if isinstance(val, Tuple):
23
+ flattened_val = "["
24
+ for item in val:
25
+ flattened_val += str(item) + "\n"
26
+ flattened_val = flattened_val.rstrip("\n")
27
+ val = flattened_val + "]"
28
+ lines += f"{key}: {str(val)}".split("\n")
29
+ return "\n ".join(lines)
difpoint/src/config/crop_config.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ parameters used for crop faces
5
+ """
6
+
7
+ from dataclasses import dataclass
8
+
9
+ from .base_config import PrintableConfig
10
+
11
+
12
+ @dataclass(repr=False) # use repr from PrintableConfig
13
+ class CropConfig(PrintableConfig):
14
+ insightface_root: str = "../../dataset_process/pretrained_weights/insightface"
15
+ landmark_ckpt_path: str = "../../dataset_process/pretrained_weights/liveportrait/landmark.onnx"
16
+ device_id: int = 0 # gpu device id
17
+ flag_force_cpu: bool = False # force cpu inference, WIP
18
+ ########## source image cropping option ##########
19
+ dsize: int = 512 # crop size
20
+ scale: float = 2.0 # scale factor
21
+ vx_ratio: float = 0 # vx ratio
22
+ vy_ratio: float = -0.125 # vy ratio +up, -down
23
+ max_face_num: int = 0 # max face number, 0 mean no limit
24
+
25
+ ########## driving video auto cropping option ##########
26
+ scale_crop_video: float = 2.2 # 2.0 # scale factor for cropping video
27
+ vx_ratio_crop_video: float = 0.0 # adjust y offset
28
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
29
+ direction: str = "large-small" # direction of cropping
difpoint/src/config/inference_config.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ config dataclass used for inference
5
+ """
6
+
7
+ import os.path as osp
8
+ import cv2
9
+ from numpy import ndarray
10
+ from dataclasses import dataclass
11
+ from typing import Literal, Tuple
12
+ from .base_config import PrintableConfig, make_abs_path
13
+
14
+
15
+ @dataclass(repr=False) # use repr from PrintableConfig
16
+ class InferenceConfig(PrintableConfig):
17
+ # MODEL CONFIG, NOT EXPORTED PARAMS
18
+ models_config: str = make_abs_path('./models.yaml') # portrait animation config
19
+ checkpoint_F: str = make_abs_path('../../dataset_process/pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
20
+ checkpoint_M: str = make_abs_path('../../dataset_process/pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
21
+ checkpoint_G: str = make_abs_path('../../dataset_process/pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G
22
+ checkpoint_W: str = make_abs_path('../../dataset_process/pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
23
+ checkpoint_S: str = make_abs_path('../../dataset_process/pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
24
+
25
+ # EXPORTED PARAMS
26
+ flag_use_half_precision: bool = True
27
+ flag_crop_driving_video: bool = False
28
+ device_id: int = 0
29
+ flag_lip_zero: bool = False
30
+ flag_eye_retargeting: bool = False
31
+ flag_lip_retargeting: bool = False
32
+ flag_stitching: bool = False
33
+ flag_relative_motion: bool = False
34
+ flag_pasteback: bool = False
35
+ flag_do_crop: bool = False
36
+ flag_do_rot: bool = False
37
+ flag_force_cpu: bool = False
38
+ flag_do_torch_compile: bool = False
39
+
40
+ # NOT EXPORTED PARAMS
41
+ lip_zero_threshold: float = 0.03 # threshold for flag_lip_zero
42
+ anchor_frame: int = 0 # TO IMPLEMENT
43
+
44
+ input_shape: Tuple[int, int] = (256, 256) # input shape
45
+ output_format: Literal['mp4', 'gif'] = 'mp4' # output video format
46
+ crf: int = 15 # crf for output video
47
+ output_fps: int = 25 # default output fps
48
+
49
+ mask_crop: ndarray = cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR)
50
+ size_gif: int = 256 # default gif size, TO IMPLEMENT
51
+ source_max_dim: int = 1280 # the max dim of height and width of source image
52
+ source_division: int = 2 # make sure the height and width of source image can be divided by this number
difpoint/src/config/models.yaml ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model_params:
2
+ appearance_feature_extractor_params: # the F in the paper
3
+ image_channel: 3
4
+ block_expansion: 64
5
+ num_down_blocks: 2
6
+ max_features: 512
7
+ reshape_channel: 32
8
+ reshape_depth: 16
9
+ num_resblocks: 6
10
+ motion_extractor_params: # the M in the paper
11
+ num_kp: 21
12
+ backbone: convnextv2_tiny
13
+ warping_module_params: # the W in the paper
14
+ num_kp: 21
15
+ block_expansion: 64
16
+ max_features: 512
17
+ num_down_blocks: 2
18
+ reshape_channel: 32
19
+ estimate_occlusion_map: True
20
+ dense_motion_params:
21
+ block_expansion: 32
22
+ max_features: 1024
23
+ num_blocks: 5
24
+ reshape_depth: 16
25
+ compress: 4
26
+ spade_generator_params: # the G in the paper
27
+ upscale: 2 # represents upsample factor 256x256 -> 512x512
28
+ block_expansion: 64
29
+ max_features: 512
30
+ num_down_blocks: 2
31
+ stitching_retargeting_module_params: # the S in the paper
32
+ stitching:
33
+ input_size: 126 # (21*3)*2
34
+ hidden_sizes: [128, 128, 64]
35
+ output_size: 65 # (21*3)+2(tx,ty)
36
+ lip:
37
+ input_size: 65 # (21*3)+2
38
+ hidden_sizes: [128, 128, 64]
39
+ output_size: 63 # (21*3)
40
+ eye:
41
+ input_size: 66 # (21*3)+3
42
+ hidden_sizes: [256, 256, 128, 128, 64]
43
+ output_size: 63 # (21*3)
difpoint/src/gradio_pipeline.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Pipeline for gradio
5
+ """
6
+ import gradio as gr
7
+
8
+ from .config.argument_config import ArgumentConfig
9
+ from .live_portrait_pipeline import LivePortraitPipeline
10
+ from .utils.io import load_img_online
11
+ from .utils.rprint import rlog as log
12
+ from .utils.crop import prepare_paste_back, paste_back
13
+ from .utils.camera import get_rotation_matrix
14
+
15
+
16
+ def update_args(args, user_args):
17
+ """update the args according to user inputs
18
+ """
19
+ for k, v in user_args.items():
20
+ if hasattr(args, k):
21
+ setattr(args, k, v)
22
+ return args
23
+
24
+
25
+ class GradioPipeline(LivePortraitPipeline):
26
+
27
+ def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
28
+ super().__init__(inference_cfg, crop_cfg)
29
+ # self.live_portrait_wrapper = self.live_portrait_wrapper
30
+ self.args = args
31
+
32
+ def execute_video(
33
+ self,
34
+ input_image_path,
35
+ input_video_path,
36
+ flag_relative_input,
37
+ flag_do_crop_input,
38
+ flag_remap_input,
39
+ flag_crop_driving_video_input
40
+ ):
41
+ """ for video driven potrait animation
42
+ """
43
+ if input_image_path is not None and input_video_path is not None:
44
+ args_user = {
45
+ 'source_image': input_image_path,
46
+ 'driving_info': input_video_path,
47
+ 'flag_relative': flag_relative_input,
48
+ 'flag_do_crop': flag_do_crop_input,
49
+ 'flag_pasteback': flag_remap_input,
50
+ 'flag_crop_driving_video': flag_crop_driving_video_input
51
+ }
52
+ # update config from user input
53
+ self.args = update_args(self.args, args_user)
54
+ self.live_portrait_wrapper.update_config(self.args.__dict__)
55
+ self.cropper.update_config(self.args.__dict__)
56
+ # video driven animation
57
+ video_path, video_path_concat = self.execute(self.args)
58
+ gr.Info("Run successfully!", duration=2)
59
+ return video_path, video_path_concat,
60
+ else:
61
+ raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5)
62
+
63
+ def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True):
64
+ """ for single image retargeting
65
+ """
66
+ # disposable feature
67
+ f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
68
+ self.prepare_retargeting(input_image, flag_do_crop)
69
+
70
+ if input_eye_ratio is None or input_lip_ratio is None:
71
+ raise gr.Error("Invalid ratio input 💥!", duration=5)
72
+ else:
73
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
74
+ x_s_user = x_s_user.to(self.live_portrait_wrapper.device)
75
+ f_s_user = f_s_user.to(self.live_portrait_wrapper.device)
76
+ # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
77
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user)
78
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
79
+ # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
80
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user)
81
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
82
+ num_kp = x_s_user.shape[1]
83
+ # default: use x_s
84
+ x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
85
+ # D(W(f_s; x_s, x′_d))
86
+ out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
87
+ out = self.live_portrait_wrapper.parse_output(out['out'])[0]
88
+ out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
89
+ gr.Info("Run successfully!", duration=2)
90
+ return out, out_to_ori_blend
91
+
92
+ def prepare_retargeting(self, input_image, flag_do_crop=True):
93
+ """ for single image retargeting
94
+ """
95
+ if input_image is not None:
96
+ # gr.Info("Upload successfully!", duration=2)
97
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
98
+ ######## process source portrait ########
99
+ img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16)
100
+ log(f"Load source image from {input_image}.")
101
+ crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
102
+ if flag_do_crop:
103
+ I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
104
+ else:
105
+ I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
106
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
107
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
108
+ ############################################
109
+ f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
110
+ x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
111
+ source_lmk_user = crop_info['lmk_crop']
112
+ crop_M_c2o = crop_info['M_c2o']
113
+ mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
114
+ return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
115
+ else:
116
+ # when press the clear button, go here
117
+ raise gr.Error("The retargeting input hasn't been prepared yet 💥!", duration=5)
difpoint/src/live_portrait_pipeline.py ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Pipeline of LivePortrait
5
+ """
6
+
7
+ import torch
8
+ torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
9
+
10
+ import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
11
+ import numpy as np
12
+ import os
13
+ import os.path as osp
14
+ from rich.progress import track
15
+
16
+ from .config.argument_config import ArgumentConfig
17
+ from .config.inference_config import InferenceConfig
18
+ from .config.crop_config import CropConfig
19
+ from .utils.cropper import Cropper
20
+ from .utils.camera import get_rotation_matrix
21
+ from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
22
+ from .utils.crop import prepare_paste_back, paste_back
23
+ from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load
24
+ from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix
25
+ from .utils.rprint import rlog as log
26
+ # from .utils.viz import viz_lmk
27
+ from .live_portrait_wrapper import LivePortraitWrapper
28
+
29
+
30
+ def make_abs_path(fn):
31
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
32
+
33
+
34
+ class LivePortraitPipeline(object):
35
+
36
+ def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
37
+ self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
38
+ self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)
39
+
40
+ def execute(self, args: ArgumentConfig):
41
+ # for convenience
42
+ inf_cfg = self.live_portrait_wrapper.inference_cfg
43
+ device = self.live_portrait_wrapper.device
44
+ crop_cfg = self.cropper.crop_cfg
45
+
46
+ ######## process source portrait ########
47
+ img_rgb = load_image_rgb(args.source_image)
48
+ img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
49
+ log(f"Load source image from {args.source_image}")
50
+
51
+ crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
52
+ if crop_info is None:
53
+ raise Exception("No face detected in the source image!")
54
+ source_lmk = crop_info['lmk_crop']
55
+ img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
56
+
57
+ if inf_cfg.flag_do_crop:
58
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
59
+ else:
60
+ img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
61
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
62
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
63
+ x_c_s = x_s_info['kp']
64
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
65
+ f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
66
+ x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
67
+
68
+ flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
69
+ if flag_lip_zero:
70
+ # let lip-open scalar to be 0 at first
71
+ c_d_lip_before_animation = [0.]
72
+ combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
73
+ if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
74
+ flag_lip_zero = False
75
+ else:
76
+ lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
77
+ ############################################
78
+
79
+ ######## process driving info ########
80
+ flag_load_from_template = is_template(args.driving_info)
81
+ driving_rgb_crop_256x256_lst = None
82
+ wfp_template = None
83
+
84
+ if flag_load_from_template:
85
+ # NOTE: load from template, it is fast, but the cropping video is None
86
+ log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
87
+ template_dct = load(args.driving_info)
88
+ n_frames = template_dct['n_frames']
89
+
90
+ # set output_fps
91
+ output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
92
+ log(f'The FPS of template: {output_fps}')
93
+
94
+ if args.flag_crop_driving_video:
95
+ log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
96
+
97
+ elif osp.exists(args.driving_info) and is_video(args.driving_info):
98
+ # load from video file, AND make motion template
99
+ log(f"Load video: {args.driving_info}")
100
+ if osp.isdir(args.driving_info):
101
+ output_fps = inf_cfg.output_fps
102
+ else:
103
+ output_fps = int(get_fps(args.driving_info))
104
+ log(f'The FPS of {args.driving_info} is: {output_fps}')
105
+
106
+ log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
107
+ driving_rgb_lst = load_driving_info(args.driving_info)
108
+
109
+ ######## make motion template ########
110
+ log("Start making motion template...")
111
+ if inf_cfg.flag_crop_driving_video:
112
+ ret = self.cropper.crop_driving_video(driving_rgb_lst)
113
+ log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
114
+ driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
115
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
116
+ else:
117
+ driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
118
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
119
+
120
+ c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
121
+ # save the motion template
122
+ I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
123
+ template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
124
+
125
+ wfp_template = remove_suffix(args.driving_info) + '.pkl'
126
+ dump(wfp_template, template_dct)
127
+ log(f"Dump motion template to {wfp_template}")
128
+
129
+ n_frames = I_d_lst.shape[0]
130
+ else:
131
+ raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
132
+ #########################################
133
+
134
+ ######## prepare for pasteback ########
135
+ I_p_pstbk_lst = None
136
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
137
+ mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
138
+ I_p_pstbk_lst = []
139
+ log("Prepared pasteback mask done.")
140
+ #########################################
141
+
142
+ I_p_lst = []
143
+ R_d_0, x_d_0_info = None, None
144
+
145
+ for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
146
+ x_d_i_info = template_dct['motion'][i]
147
+ x_d_i_info = dct2device(x_d_i_info, device)
148
+ R_d_i = x_d_i_info['R_d']
149
+
150
+ if i == 0:
151
+ R_d_0 = R_d_i
152
+ x_d_0_info = x_d_i_info
153
+
154
+ if inf_cfg.flag_relative_motion:
155
+ R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
156
+ delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
157
+ scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
158
+ t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
159
+ else:
160
+ R_new = R_d_i
161
+ delta_new = x_d_i_info['exp']
162
+ scale_new = x_s_info['scale']
163
+ t_new = x_d_i_info['t']
164
+
165
+ t_new[..., 2].fill_(0) # zero tz
166
+ x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
167
+
168
+ # Algorithm 1:
169
+ if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
170
+ # without stitching or retargeting
171
+ if flag_lip_zero:
172
+ x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
173
+ else:
174
+ pass
175
+ elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
176
+ # with stitching and without retargeting
177
+ if flag_lip_zero:
178
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
179
+ else:
180
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
181
+ else:
182
+ eyes_delta, lip_delta = None, None
183
+ if inf_cfg.flag_eye_retargeting:
184
+ c_d_eyes_i = c_d_eyes_lst[i]
185
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
186
+ # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
187
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
188
+ if inf_cfg.flag_lip_retargeting:
189
+ c_d_lip_i = c_d_lip_lst[i]
190
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
191
+ # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
192
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)
193
+
194
+ if inf_cfg.flag_relative_motion: # use x_s
195
+ x_d_i_new = x_s + \
196
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
197
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
198
+ else: # use x_d,i
199
+ x_d_i_new = x_d_i_new + \
200
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
201
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
202
+
203
+ if inf_cfg.flag_stitching:
204
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
205
+
206
+ out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
207
+ I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
208
+ I_p_lst.append(I_p_i)
209
+
210
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
211
+ # TODO: pasteback is slow, considering optimize it using multi-threading or GPU
212
+ I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
213
+ I_p_pstbk_lst.append(I_p_pstbk)
214
+
215
+ mkdir(args.output_dir)
216
+ wfp_concat = None
217
+ flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
218
+
219
+ ######### build final concact result #########
220
+ # driving frame | source image | generation, or source image | generation
221
+ frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst)
222
+ wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
223
+ images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
224
+
225
+ if flag_has_audio:
226
+ # final result with concact
227
+ wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4')
228
+ add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
229
+ os.replace(wfp_concat_with_audio, wfp_concat)
230
+ log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
231
+
232
+ # save drived result
233
+ wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
234
+ if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
235
+ images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
236
+ else:
237
+ images2video(I_p_lst, wfp=wfp, fps=output_fps)
238
+
239
+ ######### build final result #########
240
+ if flag_has_audio:
241
+ wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
242
+ add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
243
+ os.replace(wfp_with_audio, wfp)
244
+ log(f"Replace {wfp} with {wfp_with_audio}")
245
+
246
+ # final log
247
+ if wfp_template not in (None, ''):
248
+ log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
249
+ log(f'Animated video: {wfp}')
250
+ log(f'Animated video with concact: {wfp_concat}')
251
+
252
+ return wfp, wfp_concat
253
+
254
+ def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs):
255
+ n_frames = I_d_lst.shape[0]
256
+ template_dct = {
257
+ 'n_frames': n_frames,
258
+ 'output_fps': kwargs.get('output_fps', 25),
259
+ 'motion': [],
260
+ 'c_d_eyes_lst': [],
261
+ 'c_d_lip_lst': [],
262
+ }
263
+
264
+ for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
265
+ # collect s_d, R_d, δ_d and t_d for inference
266
+ I_d_i = I_d_lst[i]
267
+ x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
268
+ R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])
269
+
270
+ item_dct = {
271
+ 'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32),
272
+ 'R_d': R_d_i.cpu().numpy().astype(np.float32),
273
+ 'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32),
274
+ 't': x_d_i_info['t'].cpu().numpy().astype(np.float32),
275
+ }
276
+
277
+ template_dct['motion'].append(item_dct)
278
+
279
+ c_d_eyes = c_d_eyes_lst[i].astype(np.float32)
280
+ template_dct['c_d_eyes_lst'].append(c_d_eyes)
281
+
282
+ c_d_lip = c_d_lip_lst[i].astype(np.float32)
283
+ template_dct['c_d_lip_lst'].append(c_d_lip)
284
+
285
+ return template_dct
difpoint/src/live_portrait_wrapper.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Wrapper for LivePortrait core functions
5
+ """
6
+
7
+ import os.path as osp
8
+ import numpy as np
9
+ import cv2
10
+ import torch
11
+ import yaml
12
+
13
+ from .utils.timer import Timer
14
+ from .utils.helper import load_model, concat_feat
15
+ from .utils.camera import headpose_pred_to_degree, get_rotation_matrix
16
+ from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
17
+ from .config.inference_config import InferenceConfig
18
+ from .utils.rprint import rlog as log
19
+
20
+
21
+ class LivePortraitWrapper(object):
22
+
23
+ def __init__(self, inference_cfg: InferenceConfig):
24
+
25
+ self.inference_cfg = inference_cfg
26
+ self.device_id = inference_cfg.device_id
27
+ self.compile = inference_cfg.flag_do_torch_compile
28
+ if inference_cfg.flag_force_cpu:
29
+ self.device = 'cpu'
30
+ else:
31
+ self.device = 'cuda:' + str(self.device_id)
32
+
33
+ model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader)
34
+ # init F
35
+ self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor')
36
+ log(f'Load appearance_feature_extractor done.')
37
+ # init M
38
+ self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor')
39
+ log(f'Load motion_extractor done.')
40
+ # init W
41
+ self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module')
42
+ log(f'Load warping_module done.')
43
+ # init G
44
+ self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator')
45
+ log(f'Load spade_generator done.')
46
+ # init S and R
47
+ if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S):
48
+ self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module')
49
+ log(f'Load stitching_retargeting_module done.')
50
+ else:
51
+ self.stitching_retargeting_module = None
52
+ # Optimize for inference
53
+ if self.compile:
54
+ self.warping_module = torch.compile(self.warping_module, mode='max-autotune')
55
+ self.spade_generator = torch.compile(self.spade_generator, mode='max-autotune')
56
+
57
+ self.timer = Timer()
58
+
59
+ def update_config(self, user_args):
60
+ for k, v in user_args.items():
61
+ if hasattr(self.inference_cfg, k):
62
+ setattr(self.inference_cfg, k, v)
63
+
64
+ def prepare_source(self, img: np.ndarray) -> torch.Tensor:
65
+ """ construct the input as standard
66
+ img: HxWx3, uint8, 256x256
67
+ """
68
+ h, w = img.shape[:2]
69
+ if h != self.inference_cfg.input_shape[0] or w != self.inference_cfg.input_shape[1]:
70
+ x = cv2.resize(img, (self.inference_cfg.input_shape[0], self.inference_cfg.input_shape[1]))
71
+ else:
72
+ x = img.copy()
73
+
74
+ if x.ndim == 3:
75
+ x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
76
+ elif x.ndim == 4:
77
+ x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
78
+ else:
79
+ raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
80
+ x = np.clip(x, 0, 1) # clip to 0~1
81
+ x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
82
+ x = x.to(self.device)
83
+ return x
84
+
85
+ def prepare_driving_videos(self, imgs) -> torch.Tensor:
86
+ """ construct the input as standard
87
+ imgs: NxBxHxWx3, uint8
88
+ """
89
+ if isinstance(imgs, list):
90
+ _imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1
91
+ elif isinstance(imgs, np.ndarray):
92
+ _imgs = imgs
93
+ else:
94
+ raise ValueError(f'imgs type error: {type(imgs)}')
95
+
96
+ y = _imgs.astype(np.float32) / 255.
97
+ y = np.clip(y, 0, 1) # clip to 0~1
98
+ y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW
99
+ y = y.to(self.device)
100
+
101
+ return y
102
+
103
+ def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
104
+ """ get the appearance feature of the image by F
105
+ x: Bx3xHxW, normalized to 0~1
106
+ """
107
+ with torch.no_grad():
108
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
109
+ feature_3d = self.appearance_feature_extractor(x)
110
+
111
+ return feature_3d.float()
112
+
113
+ def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
114
+ """ get the implicit keypoint information
115
+ x: Bx3xHxW, normalized to 0~1
116
+ flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape
117
+ return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'
118
+ """
119
+ with torch.no_grad():
120
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
121
+ kp_info = self.motion_extractor(x)
122
+
123
+ if self.inference_cfg.flag_use_half_precision:
124
+ # float the dict
125
+ for k, v in kp_info.items():
126
+ if isinstance(v, torch.Tensor):
127
+ kp_info[k] = v.float()
128
+
129
+ flag_refine_info: bool = kwargs.get('flag_refine_info', True)
130
+ if flag_refine_info:
131
+ bs = kp_info['kp'].shape[0]
132
+ kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1
133
+ kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1
134
+ kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1
135
+ kp_info['kp'] = kp_info['kp'].reshape(bs, -1) # B,Nx3
136
+ kp_info['exp'] = kp_info['exp'].reshape(bs, -1) # B,Nx3
137
+
138
+ return kp_info
139
+
140
+ def get_pose_dct(self, kp_info: dict) -> dict:
141
+ pose_dct = dict(
142
+ pitch=headpose_pred_to_degree(kp_info['pitch']).item(),
143
+ yaw=headpose_pred_to_degree(kp_info['yaw']).item(),
144
+ roll=headpose_pred_to_degree(kp_info['roll']).item(),
145
+ )
146
+ return pose_dct
147
+
148
+ def get_fs_and_kp_info(self, source_prepared, driving_first_frame):
149
+
150
+ # get the canonical keypoints of source image by M
151
+ source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True)
152
+ source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll'])
153
+
154
+ # get the canonical keypoints of first driving frame by M
155
+ driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True)
156
+ driving_first_frame_rotation = get_rotation_matrix(
157
+ driving_first_frame_kp_info['pitch'],
158
+ driving_first_frame_kp_info['yaw'],
159
+ driving_first_frame_kp_info['roll']
160
+ )
161
+
162
+ # get feature volume by F
163
+ source_feature_3d = self.extract_feature_3d(source_prepared)
164
+
165
+ return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation
166
+
167
+ def transform_keypoint(self, kp_info: dict):
168
+ """
169
+ transform the implicit keypoints with the pose, shift, and expression deformation
170
+ kp: BxNx3
171
+ """
172
+ kp = kp_info['kp'] # (bs, k, 3)
173
+ pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
174
+
175
+ t, exp = kp_info['t'], kp_info['exp']
176
+ scale = kp_info['scale']
177
+
178
+ pitch = headpose_pred_to_degree(pitch)
179
+ yaw = headpose_pred_to_degree(yaw)
180
+ roll = headpose_pred_to_degree(roll)
181
+
182
+ bs = kp.shape[0]
183
+ if kp.ndim == 2:
184
+ num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
185
+ else:
186
+ num_kp = kp.shape[1] # Bxnum_kpx3
187
+
188
+ rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
189
+
190
+ # Eqn.2: s * (R * x_c,s + exp) + t
191
+ kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
192
+ kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
193
+ kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
194
+ # kp_transformed[:, :, :] += t[:, None, :]
195
+
196
+ return kp_transformed
197
+
198
+ def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor:
199
+ """
200
+ kp_source: BxNx3
201
+ eye_close_ratio: Bx3
202
+ Return: Bx(3*num_kp+2)
203
+ """
204
+ feat_eye = concat_feat(kp_source, eye_close_ratio)
205
+
206
+ with torch.no_grad():
207
+ delta = self.stitching_retargeting_module['eye'](feat_eye)
208
+
209
+ return delta
210
+
211
+ def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor:
212
+ """
213
+ kp_source: BxNx3
214
+ lip_close_ratio: Bx2
215
+ """
216
+ feat_lip = concat_feat(kp_source, lip_close_ratio)
217
+
218
+ with torch.no_grad():
219
+ delta = self.stitching_retargeting_module['lip'](feat_lip)
220
+
221
+ return delta
222
+
223
+ def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
224
+ """
225
+ kp_source: BxNx3
226
+ kp_driving: BxNx3
227
+ Return: Bx(3*num_kp+2)
228
+ """
229
+ feat_stiching = concat_feat(kp_source, kp_driving)
230
+
231
+ with torch.no_grad():
232
+ delta = self.stitching_retargeting_module['stitching'](feat_stiching)
233
+
234
+ return delta
235
+
236
+ def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
237
+ """ conduct the stitching
238
+ kp_source: Bxnum_kpx3
239
+ kp_driving: Bxnum_kpx3
240
+ """
241
+
242
+ if self.stitching_retargeting_module is not None:
243
+
244
+ bs, num_kp = kp_source.shape[:2]
245
+
246
+ kp_driving_new = kp_driving.clone()
247
+ delta = self.stitch(kp_source, kp_driving_new)
248
+
249
+ delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3
250
+ delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2
251
+
252
+ kp_driving_new += delta_exp
253
+ kp_driving_new[..., :2] += delta_tx_ty
254
+
255
+ return kp_driving_new
256
+
257
+ return kp_driving
258
+
259
+ def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
260
+ """ get the image after the warping of the implicit keypoints
261
+ feature_3d: Bx32x16x64x64, feature volume
262
+ kp_source: BxNx3
263
+ kp_driving: BxNx3
264
+ """
265
+ # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i))
266
+ with torch.no_grad():
267
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
268
+ if self.compile:
269
+ # Mark the beginning of a new CUDA Graph step
270
+ torch.compiler.cudagraph_mark_step_begin()
271
+ # get decoder input
272
+ ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
273
+ # decode
274
+ ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])
275
+
276
+ # float the dict
277
+ if self.inference_cfg.flag_use_half_precision:
278
+ for k, v in ret_dct.items():
279
+ if isinstance(v, torch.Tensor):
280
+ ret_dct[k] = v.float()
281
+
282
+ return ret_dct
283
+
284
+ def parse_output(self, out: torch.Tensor) -> np.ndarray:
285
+ """ construct the output as standard
286
+ return: 1xHxWx3, uint8
287
+ """
288
+ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3
289
+ out = np.clip(out, 0, 1) # clip to 0~1
290
+ out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255
291
+
292
+ return out
293
+
294
+ def calc_driving_ratio(self, driving_lmk_lst):
295
+ input_eye_ratio_lst = []
296
+ input_lip_ratio_lst = []
297
+ for lmk in driving_lmk_lst:
298
+ # for eyes retargeting
299
+ input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None]))
300
+ # for lip retargeting
301
+ input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None]))
302
+ return input_eye_ratio_lst, input_lip_ratio_lst
303
+
304
+ def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
305
+ c_s_eyes = calc_eye_close_ratio(source_lmk[None])
306
+ c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device)
307
+ c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device)
308
+ # [c_s,eyes, c_d,eyes,i]
309
+ combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1)
310
+ return combined_eye_ratio_tensor
311
+
312
+ def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
313
+ c_s_lip = calc_lip_close_ratio(source_lmk[None])
314
+ c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device)
315
+ c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1
316
+ # [c_s,lip, c_d,lip,i]
317
+ combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
318
+ return combined_lip_ratio_tensor
difpoint/src/modules/__init__.py ADDED
File without changes
difpoint/src/modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (138 Bytes). View file
 
difpoint/src/modules/__pycache__/appearance_feature_extractor.cpython-310.pyc ADDED
Binary file (1.82 kB). View file
 
difpoint/src/modules/__pycache__/convnextv2.cpython-310.pyc ADDED
Binary file (4.75 kB). View file
 
difpoint/src/modules/__pycache__/dense_motion.cpython-310.pyc ADDED
Binary file (3.61 kB). View file
 
difpoint/src/modules/__pycache__/motion_extractor.cpython-310.pyc ADDED
Binary file (1.62 kB). View file
 
difpoint/src/modules/__pycache__/spade_generator.cpython-310.pyc ADDED
Binary file (2.01 kB). View file
 
difpoint/src/modules/__pycache__/stitching_retargeting_network.cpython-310.pyc ADDED
Binary file (1.95 kB). View file
 
difpoint/src/modules/__pycache__/util.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
difpoint/src/modules/__pycache__/warping_network.cpython-310.pyc ADDED
Binary file (2.16 kB). View file
 
difpoint/src/modules/appearance_feature_extractor.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Appearance extractor(F) defined in paper, which maps the source image s to a 3D appearance feature volume.
5
+ """
6
+
7
+ import torch
8
+ from torch import nn
9
+ from .util import SameBlock2d, DownBlock2d, ResBlock3d
10
+
11
+
12
+ class AppearanceFeatureExtractor(nn.Module):
13
+
14
+ def __init__(self, image_channel, block_expansion, num_down_blocks, max_features, reshape_channel, reshape_depth, num_resblocks):
15
+ super(AppearanceFeatureExtractor, self).__init__()
16
+ self.image_channel = image_channel
17
+ self.block_expansion = block_expansion
18
+ self.num_down_blocks = num_down_blocks
19
+ self.max_features = max_features
20
+ self.reshape_channel = reshape_channel
21
+ self.reshape_depth = reshape_depth
22
+
23
+ self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))
24
+
25
+ down_blocks = []
26
+ for i in range(num_down_blocks):
27
+ in_features = min(max_features, block_expansion * (2 ** i))
28
+ out_features = min(max_features, block_expansion * (2 ** (i + 1)))
29
+ down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
30
+ self.down_blocks = nn.ModuleList(down_blocks)
31
+
32
+ self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
33
+
34
+ self.resblocks_3d = torch.nn.Sequential()
35
+ for i in range(num_resblocks):
36
+ self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
37
+
38
+ def forward(self, source_image):
39
+ out = self.first(source_image) # Bx3x256x256 -> Bx64x256x256
40
+
41
+ for i in range(len(self.down_blocks)):
42
+ out = self.down_blocks[i](out)
43
+ out = self.second(out)
44
+ bs, c, h, w = out.shape # ->Bx512x64x64
45
+
46
+ f_s = out.view(bs, self.reshape_channel, self.reshape_depth, h, w) # ->Bx32x16x64x64
47
+ f_s = self.resblocks_3d(f_s) # ->Bx32x16x64x64
48
+ return f_s
difpoint/src/modules/convnextv2.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation.
5
+ """
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ # from timm.models.layers import trunc_normal_, DropPath
10
+ from .util import LayerNorm, DropPath, trunc_normal_, GRN
11
+
12
+ __all__ = ['convnextv2_tiny']
13
+
14
+
15
+ class Block(nn.Module):
16
+ """ ConvNeXtV2 Block.
17
+
18
+ Args:
19
+ dim (int): Number of input channels.
20
+ drop_path (float): Stochastic depth rate. Default: 0.0
21
+ """
22
+
23
+ def __init__(self, dim, drop_path=0.):
24
+ super().__init__()
25
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
26
+ self.norm = LayerNorm(dim, eps=1e-6)
27
+ self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
28
+ self.act = nn.GELU()
29
+ self.grn = GRN(4 * dim)
30
+ self.pwconv2 = nn.Linear(4 * dim, dim)
31
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
32
+
33
+ def forward(self, x):
34
+ input = x
35
+ x = self.dwconv(x)
36
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
37
+ x = self.norm(x)
38
+ x = self.pwconv1(x)
39
+ x = self.act(x)
40
+ x = self.grn(x)
41
+ x = self.pwconv2(x)
42
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
43
+
44
+ x = input + self.drop_path(x)
45
+ return x
46
+
47
+
48
+ class ConvNeXtV2(nn.Module):
49
+ """ ConvNeXt V2
50
+
51
+ Args:
52
+ in_chans (int): Number of input image channels. Default: 3
53
+ num_classes (int): Number of classes for classification head. Default: 1000
54
+ depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
55
+ dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
56
+ drop_path_rate (float): Stochastic depth rate. Default: 0.
57
+ head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
58
+ """
59
+
60
+ def __init__(
61
+ self,
62
+ in_chans=3,
63
+ depths=[3, 3, 9, 3],
64
+ dims=[96, 192, 384, 768],
65
+ drop_path_rate=0.,
66
+ **kwargs
67
+ ):
68
+ super().__init__()
69
+ self.depths = depths
70
+ self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
71
+ stem = nn.Sequential(
72
+ nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
73
+ LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
74
+ )
75
+ self.downsample_layers.append(stem)
76
+ for i in range(3):
77
+ downsample_layer = nn.Sequential(
78
+ LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
79
+ nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
80
+ )
81
+ self.downsample_layers.append(downsample_layer)
82
+
83
+ self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
84
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
85
+ cur = 0
86
+ for i in range(4):
87
+ stage = nn.Sequential(
88
+ *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
89
+ )
90
+ self.stages.append(stage)
91
+ cur += depths[i]
92
+
93
+ self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
94
+
95
+ # NOTE: the output semantic items
96
+ num_bins = kwargs.get('num_bins', 66)
97
+ num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints
98
+ self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints
99
+
100
+ # print('dims[-1]: ', dims[-1])
101
+ self.fc_scale = nn.Linear(dims[-1], 1) # scale
102
+ self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins
103
+ self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins
104
+ self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins
105
+ self.fc_t = nn.Linear(dims[-1], 3) # translation
106
+ self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta
107
+
108
+ def _init_weights(self, m):
109
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
110
+ trunc_normal_(m.weight, std=.02)
111
+ nn.init.constant_(m.bias, 0)
112
+
113
+ def forward_features(self, x):
114
+ for i in range(4):
115
+ x = self.downsample_layers[i](x)
116
+ x = self.stages[i](x)
117
+ return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
118
+
119
+ def forward(self, x):
120
+ x = self.forward_features(x)
121
+
122
+ # implicit keypoints
123
+ kp = self.fc_kp(x)
124
+
125
+ # pose and expression deformation
126
+ pitch = self.fc_pitch(x)
127
+ yaw = self.fc_yaw(x)
128
+ roll = self.fc_roll(x)
129
+ t = self.fc_t(x)
130
+ exp = self.fc_exp(x)
131
+ scale = self.fc_scale(x)
132
+
133
+ ret_dct = {
134
+ 'pitch': pitch,
135
+ 'yaw': yaw,
136
+ 'roll': roll,
137
+ 't': t,
138
+ 'exp': exp,
139
+ 'scale': scale,
140
+
141
+ 'kp': kp, # canonical keypoint
142
+ }
143
+
144
+ return ret_dct
145
+
146
+
147
+ def convnextv2_tiny(**kwargs):
148
+ model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
149
+ return model
difpoint/src/modules/dense_motion.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
5
+ """
6
+
7
+ from torch import nn
8
+ import torch.nn.functional as F
9
+ import torch
10
+ from .util import Hourglass, make_coordinate_grid, kp2gaussian
11
+
12
+
13
+ class DenseMotionNetwork(nn.Module):
14
+ def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True):
15
+ super(DenseMotionNetwork, self).__init__()
16
+ self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) # ~60+G
17
+
18
+ self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) # 65G! NOTE: computation cost is large
19
+ self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) # 0.8G
20
+ self.norm = nn.BatchNorm3d(compress, affine=True)
21
+ self.num_kp = num_kp
22
+ self.flag_estimate_occlusion_map = estimate_occlusion_map
23
+
24
+ if self.flag_estimate_occlusion_map:
25
+ self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
26
+ else:
27
+ self.occlusion = None
28
+
29
+ def create_sparse_motions(self, feature, kp_driving, kp_source):
30
+ bs, _, d, h, w = feature.shape # (bs, 4, 16, 64, 64)
31
+ identity_grid = make_coordinate_grid((d, h, w), ref=kp_source) # (16, 64, 64, 3)
32
+ identity_grid = identity_grid.view(1, 1, d, h, w, 3) # (1, 1, d=16, h=64, w=64, 3)
33
+ coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3)
34
+
35
+ k = coordinate_grid.shape[1]
36
+
37
+ # NOTE: there lacks an one-order flow
38
+ driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3)
39
+
40
+ # adding background feature
41
+ identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
42
+ sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # (bs, 1+num_kp, d, h, w, 3)
43
+ return sparse_motions
44
+
45
+ def create_deformed_feature(self, feature, sparse_motions):
46
+ bs, _, d, h, w = feature.shape
47
+ feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w)
48
+ feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w)
49
+ sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3)
50
+ sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False)
51
+ sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w)
52
+
53
+ return sparse_deformed
54
+
55
+ def create_heatmap_representations(self, feature, kp_driving, kp_source):
56
+ spatial_size = feature.shape[3:] # (d=16, h=64, w=64)
57
+ gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
58
+ gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
59
+ heatmap = gaussian_driving - gaussian_source # (bs, num_kp, d, h, w)
60
+
61
+ # adding background feature
62
+ zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()).to(heatmap.device)
63
+ heatmap = torch.cat([zeros, heatmap], dim=1)
64
+ heatmap = heatmap.unsqueeze(2) # (bs, 1+num_kp, 1, d, h, w)
65
+ return heatmap
66
+
67
+ def forward(self, feature, kp_driving, kp_source):
68
+ bs, _, d, h, w = feature.shape # (bs, 32, 16, 64, 64)
69
+
70
+ feature = self.compress(feature) # (bs, 4, 16, 64, 64)
71
+ feature = self.norm(feature) # (bs, 4, 16, 64, 64)
72
+ feature = F.relu(feature) # (bs, 4, 16, 64, 64)
73
+
74
+ out_dict = dict()
75
+
76
+ # 1. deform 3d feature
77
+ sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) # (bs, 1+num_kp, d, h, w, 3)
78
+ deformed_feature = self.create_deformed_feature(feature, sparse_motion) # (bs, 1+num_kp, c=4, d=16, h=64, w=64)
79
+
80
+ # 2. (bs, 1+num_kp, d, h, w)
81
+ heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) # (bs, 1+num_kp, 1, d, h, w)
82
+
83
+ input = torch.cat([heatmap, deformed_feature], dim=2) # (bs, 1+num_kp, c=5, d=16, h=64, w=64)
84
+ input = input.view(bs, -1, d, h, w) # (bs, (1+num_kp)*c=105, d=16, h=64, w=64)
85
+
86
+ prediction = self.hourglass(input)
87
+
88
+ mask = self.mask(prediction)
89
+ mask = F.softmax(mask, dim=1) # (bs, 1+num_kp, d=16, h=64, w=64)
90
+ out_dict['mask'] = mask
91
+ mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
92
+ sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w)
93
+ deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) mask take effect in this place
94
+ deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3)
95
+
96
+ out_dict['deformation'] = deformation
97
+
98
+ if self.flag_estimate_occlusion_map:
99
+ bs, _, d, h, w = prediction.shape
100
+ prediction_reshape = prediction.view(bs, -1, h, w)
101
+ occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape)) # Bx1x64x64
102
+ out_dict['occlusion_map'] = occlusion_map
103
+
104
+ return out_dict
difpoint/src/modules/motion_extractor.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Motion extractor(M), which directly predicts the canonical keypoints, head pose and expression deformation of the input image
5
+ """
6
+
7
+ from torch import nn
8
+ import torch
9
+
10
+ from .convnextv2 import convnextv2_tiny
11
+ from .util import filter_state_dict
12
+
13
+ model_dict = {
14
+ 'convnextv2_tiny': convnextv2_tiny,
15
+ }
16
+
17
+
18
+ class MotionExtractor(nn.Module):
19
+ def __init__(self, **kwargs):
20
+ super(MotionExtractor, self).__init__()
21
+
22
+ # default is convnextv2_base
23
+ backbone = kwargs.get('backbone', 'convnextv2_tiny')
24
+ self.detector = model_dict.get(backbone)(**kwargs)
25
+
26
+ def load_pretrained(self, init_path: str):
27
+ if init_path not in (None, ''):
28
+ state_dict = torch.load(init_path, map_location=lambda storage, loc: storage)['model']
29
+ state_dict = filter_state_dict(state_dict, remove_name='head')
30
+ ret = self.detector.load_state_dict(state_dict, strict=False)
31
+ print(f'Load pretrained model from {init_path}, ret: {ret}')
32
+
33
+ def forward(self, x):
34
+ out = self.detector(x)
35
+ return out
difpoint/src/modules/spade_generator.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Spade decoder(G) defined in the paper, which input the warped feature to generate the animated image.
5
+ """
6
+
7
+ import torch
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ from .util import SPADEResnetBlock
11
+
12
+
13
+ class SPADEDecoder(nn.Module):
14
+ def __init__(self, upscale=1, max_features=256, block_expansion=64, out_channels=64, num_down_blocks=2):
15
+ for i in range(num_down_blocks):
16
+ input_channels = min(max_features, block_expansion * (2 ** (i + 1)))
17
+ self.upscale = upscale
18
+ super().__init__()
19
+ norm_G = 'spadespectralinstance'
20
+ label_num_channels = input_channels # 256
21
+
22
+ self.fc = nn.Conv2d(input_channels, 2 * input_channels, 3, padding=1)
23
+ self.G_middle_0 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
24
+ self.G_middle_1 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
25
+ self.G_middle_2 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
26
+ self.G_middle_3 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
27
+ self.G_middle_4 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
28
+ self.G_middle_5 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
29
+ self.up_0 = SPADEResnetBlock(2 * input_channels, input_channels, norm_G, label_num_channels)
30
+ self.up_1 = SPADEResnetBlock(input_channels, out_channels, norm_G, label_num_channels)
31
+ self.up = nn.Upsample(scale_factor=2)
32
+
33
+ if self.upscale is None or self.upscale <= 1:
34
+ self.conv_img = nn.Conv2d(out_channels, 3, 3, padding=1)
35
+ else:
36
+ self.conv_img = nn.Sequential(
37
+ nn.Conv2d(out_channels, 3 * (2 * 2), kernel_size=3, padding=1),
38
+ nn.PixelShuffle(upscale_factor=2)
39
+ )
40
+
41
+ def forward(self, feature):
42
+ seg = feature # Bx256x64x64
43
+ x = self.fc(feature) # Bx512x64x64
44
+ x = self.G_middle_0(x, seg)
45
+ x = self.G_middle_1(x, seg)
46
+ x = self.G_middle_2(x, seg)
47
+ x = self.G_middle_3(x, seg)
48
+ x = self.G_middle_4(x, seg)
49
+ x = self.G_middle_5(x, seg)
50
+
51
+ x = self.up(x) # Bx512x64x64 -> Bx512x128x128
52
+ x = self.up_0(x, seg) # Bx512x128x128 -> Bx256x128x128
53
+ x = self.up(x) # Bx256x128x128 -> Bx256x256x256
54
+ x = self.up_1(x, seg) # Bx256x256x256 -> Bx64x256x256
55
+
56
+ x = self.conv_img(F.leaky_relu(x, 2e-1)) # Bx64x256x256 -> Bx3xHxW
57
+ x = torch.sigmoid(x) # Bx3xHxW
58
+
59
+ return x
difpoint/src/modules/stitching_retargeting_network.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Stitching module(S) and two retargeting modules(R) defined in the paper.
5
+
6
+ - The stitching module pastes the animated portrait back into the original image space without pixel misalignment, such as in
7
+ the stitching region.
8
+
9
+ - The eyes retargeting module is designed to address the issue of incomplete eye closure during cross-id reenactment, especially
10
+ when a person with small eyes drives a person with larger eyes.
11
+
12
+ - The lip retargeting module is designed similarly to the eye retargeting module, and can also normalize the input by ensuring that
13
+ the lips are in a closed state, which facilitates better animation driving.
14
+ """
15
+ from torch import nn
16
+
17
+
18
+ class StitchingRetargetingNetwork(nn.Module):
19
+ def __init__(self, input_size, hidden_sizes, output_size):
20
+ super(StitchingRetargetingNetwork, self).__init__()
21
+ layers = []
22
+ for i in range(len(hidden_sizes)):
23
+ if i == 0:
24
+ layers.append(nn.Linear(input_size, hidden_sizes[i]))
25
+ else:
26
+ layers.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
27
+ layers.append(nn.ReLU(inplace=True))
28
+ layers.append(nn.Linear(hidden_sizes[-1], output_size))
29
+ self.mlp = nn.Sequential(*layers)
30
+
31
+ def initialize_weights_to_zero(self):
32
+ for m in self.modules():
33
+ if isinstance(m, nn.Linear):
34
+ nn.init.zeros_(m.weight)
35
+ nn.init.zeros_(m.bias)
36
+
37
+ def forward(self, x):
38
+ return self.mlp(x)
difpoint/src/modules/util.py ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ This file defines various neural network modules and utility functions, including convolutional and residual blocks,
5
+ normalizations, and functions for spatial transformation and tensor manipulation.
6
+ """
7
+
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ import torch
11
+ import torch.nn.utils.spectral_norm as spectral_norm
12
+ import math
13
+ import warnings
14
+
15
+
16
+ def kp2gaussian(kp, spatial_size, kp_variance):
17
+ """
18
+ Transform a keypoint into gaussian like representation
19
+ """
20
+ mean = kp
21
+
22
+ coordinate_grid = make_coordinate_grid(spatial_size, mean)
23
+ number_of_leading_dimensions = len(mean.shape) - 1
24
+ shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
25
+ coordinate_grid = coordinate_grid.view(*shape)
26
+ repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
27
+ coordinate_grid = coordinate_grid.repeat(*repeats)
28
+
29
+ # Preprocess kp shape
30
+ shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
31
+ mean = mean.view(*shape)
32
+
33
+ mean_sub = (coordinate_grid - mean)
34
+
35
+ out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
36
+
37
+ return out
38
+
39
+
40
+ def make_coordinate_grid(spatial_size, ref, **kwargs):
41
+ d, h, w = spatial_size
42
+ x = torch.arange(w).type(ref.dtype).to(ref.device)
43
+ y = torch.arange(h).type(ref.dtype).to(ref.device)
44
+ z = torch.arange(d).type(ref.dtype).to(ref.device)
45
+
46
+ # NOTE: must be right-down-in
47
+ x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right
48
+ y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom
49
+ z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner
50
+
51
+ yy = y.view(1, -1, 1).repeat(d, 1, w)
52
+ xx = x.view(1, 1, -1).repeat(d, h, 1)
53
+ zz = z.view(-1, 1, 1).repeat(1, h, w)
54
+
55
+ meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
56
+
57
+ return meshed
58
+
59
+
60
+ class ConvT2d(nn.Module):
61
+ """
62
+ Upsampling block for use in decoder.
63
+ """
64
+
65
+ def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
66
+ super(ConvT2d, self).__init__()
67
+
68
+ self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
69
+ padding=padding, output_padding=output_padding)
70
+ self.norm = nn.InstanceNorm2d(out_features)
71
+
72
+ def forward(self, x):
73
+ out = self.convT(x)
74
+ out = self.norm(out)
75
+ out = F.leaky_relu(out)
76
+ return out
77
+
78
+
79
+ class ResBlock3d(nn.Module):
80
+ """
81
+ Res block, preserve spatial resolution.
82
+ """
83
+
84
+ def __init__(self, in_features, kernel_size, padding):
85
+ super(ResBlock3d, self).__init__()
86
+ self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
87
+ self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
88
+ self.norm1 = nn.BatchNorm3d(in_features, affine=True)
89
+ self.norm2 = nn.BatchNorm3d(in_features, affine=True)
90
+
91
+ def forward(self, x):
92
+ out = self.norm1(x)
93
+ out = F.relu(out)
94
+ out = self.conv1(out)
95
+ out = self.norm2(out)
96
+ out = F.relu(out)
97
+ out = self.conv2(out)
98
+ out += x
99
+ return out
100
+
101
+
102
+ class UpBlock3d(nn.Module):
103
+ """
104
+ Upsampling block for use in decoder.
105
+ """
106
+
107
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
108
+ super(UpBlock3d, self).__init__()
109
+
110
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
111
+ padding=padding, groups=groups)
112
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
113
+
114
+ def forward(self, x):
115
+ out = F.interpolate(x, scale_factor=(1, 2, 2))
116
+ out = self.conv(out)
117
+ out = self.norm(out)
118
+ out = F.relu(out)
119
+ return out
120
+
121
+
122
+ class DownBlock2d(nn.Module):
123
+ """
124
+ Downsampling block for use in encoder.
125
+ """
126
+
127
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
128
+ super(DownBlock2d, self).__init__()
129
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
130
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
131
+ self.pool = nn.AvgPool2d(kernel_size=(2, 2))
132
+
133
+ def forward(self, x):
134
+ out = self.conv(x)
135
+ out = self.norm(out)
136
+ out = F.relu(out)
137
+ out = self.pool(out)
138
+ return out
139
+
140
+
141
+ class DownBlock3d(nn.Module):
142
+ """
143
+ Downsampling block for use in encoder.
144
+ """
145
+
146
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
147
+ super(DownBlock3d, self).__init__()
148
+ '''
149
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
150
+ padding=padding, groups=groups, stride=(1, 2, 2))
151
+ '''
152
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
153
+ padding=padding, groups=groups)
154
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
155
+ self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
156
+
157
+ def forward(self, x):
158
+ out = self.conv(x)
159
+ out = self.norm(out)
160
+ out = F.relu(out)
161
+ out = self.pool(out)
162
+ return out
163
+
164
+
165
+ class SameBlock2d(nn.Module):
166
+ """
167
+ Simple block, preserve spatial resolution.
168
+ """
169
+
170
+ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
171
+ super(SameBlock2d, self).__init__()
172
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
173
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
174
+ if lrelu:
175
+ self.ac = nn.LeakyReLU()
176
+ else:
177
+ self.ac = nn.ReLU()
178
+
179
+ def forward(self, x):
180
+ out = self.conv(x)
181
+ out = self.norm(out)
182
+ out = self.ac(out)
183
+ return out
184
+
185
+
186
+ class Encoder(nn.Module):
187
+ """
188
+ Hourglass Encoder
189
+ """
190
+
191
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
192
+ super(Encoder, self).__init__()
193
+
194
+ down_blocks = []
195
+ for i in range(num_blocks):
196
+ down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
197
+ self.down_blocks = nn.ModuleList(down_blocks)
198
+
199
+ def forward(self, x):
200
+ outs = [x]
201
+ for down_block in self.down_blocks:
202
+ outs.append(down_block(outs[-1]))
203
+ return outs
204
+
205
+
206
+ class Decoder(nn.Module):
207
+ """
208
+ Hourglass Decoder
209
+ """
210
+
211
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
212
+ super(Decoder, self).__init__()
213
+
214
+ up_blocks = []
215
+
216
+ for i in range(num_blocks)[::-1]:
217
+ in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
218
+ out_filters = min(max_features, block_expansion * (2 ** i))
219
+ up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
220
+
221
+ self.up_blocks = nn.ModuleList(up_blocks)
222
+ self.out_filters = block_expansion + in_features
223
+
224
+ self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
225
+ self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
226
+
227
+ def forward(self, x):
228
+ out = x.pop()
229
+ for up_block in self.up_blocks:
230
+ out = up_block(out)
231
+ skip = x.pop()
232
+ out = torch.cat([out, skip], dim=1)
233
+ out = self.conv(out)
234
+ out = self.norm(out)
235
+ out = F.relu(out)
236
+ return out
237
+
238
+
239
+ class Hourglass(nn.Module):
240
+ """
241
+ Hourglass architecture.
242
+ """
243
+
244
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
245
+ super(Hourglass, self).__init__()
246
+ self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
247
+ self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
248
+ self.out_filters = self.decoder.out_filters
249
+
250
+ def forward(self, x):
251
+ return self.decoder(self.encoder(x))
252
+
253
+
254
+ class SPADE(nn.Module):
255
+ def __init__(self, norm_nc, label_nc):
256
+ super().__init__()
257
+
258
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
259
+ nhidden = 128
260
+
261
+ self.mlp_shared = nn.Sequential(
262
+ nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
263
+ nn.ReLU())
264
+ self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
265
+ self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
266
+
267
+ def forward(self, x, segmap):
268
+ normalized = self.param_free_norm(x)
269
+ segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
270
+ actv = self.mlp_shared(segmap)
271
+ gamma = self.mlp_gamma(actv)
272
+ beta = self.mlp_beta(actv)
273
+ out = normalized * (1 + gamma) + beta
274
+ return out
275
+
276
+
277
+ class SPADEResnetBlock(nn.Module):
278
+ def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
279
+ super().__init__()
280
+ # Attributes
281
+ self.learned_shortcut = (fin != fout)
282
+ fmiddle = min(fin, fout)
283
+ self.use_se = use_se
284
+ # create conv layers
285
+ self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
286
+ self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
287
+ if self.learned_shortcut:
288
+ self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
289
+ # apply spectral norm if specified
290
+ if 'spectral' in norm_G:
291
+ self.conv_0 = spectral_norm(self.conv_0)
292
+ self.conv_1 = spectral_norm(self.conv_1)
293
+ if self.learned_shortcut:
294
+ self.conv_s = spectral_norm(self.conv_s)
295
+ # define normalization layers
296
+ self.norm_0 = SPADE(fin, label_nc)
297
+ self.norm_1 = SPADE(fmiddle, label_nc)
298
+ if self.learned_shortcut:
299
+ self.norm_s = SPADE(fin, label_nc)
300
+
301
+ def forward(self, x, seg1):
302
+ x_s = self.shortcut(x, seg1)
303
+ dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
304
+ dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
305
+ out = x_s + dx
306
+ return out
307
+
308
+ def shortcut(self, x, seg1):
309
+ if self.learned_shortcut:
310
+ x_s = self.conv_s(self.norm_s(x, seg1))
311
+ else:
312
+ x_s = x
313
+ return x_s
314
+
315
+ def actvn(self, x):
316
+ return F.leaky_relu(x, 2e-1)
317
+
318
+
319
+ def filter_state_dict(state_dict, remove_name='fc'):
320
+ new_state_dict = {}
321
+ for key in state_dict:
322
+ if remove_name in key:
323
+ continue
324
+ new_state_dict[key] = state_dict[key]
325
+ return new_state_dict
326
+
327
+
328
+ class GRN(nn.Module):
329
+ """ GRN (Global Response Normalization) layer
330
+ """
331
+
332
+ def __init__(self, dim):
333
+ super().__init__()
334
+ self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
335
+ self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
336
+
337
+ def forward(self, x):
338
+ Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
339
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
340
+ return self.gamma * (x * Nx) + self.beta + x
341
+
342
+
343
+ class LayerNorm(nn.Module):
344
+ r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
345
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
346
+ shape (batch_size, height, width, channels) while channels_first corresponds to inputs
347
+ with shape (batch_size, channels, height, width).
348
+ """
349
+
350
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
351
+ super().__init__()
352
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
353
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
354
+ self.eps = eps
355
+ self.data_format = data_format
356
+ if self.data_format not in ["channels_last", "channels_first"]:
357
+ raise NotImplementedError
358
+ self.normalized_shape = (normalized_shape, )
359
+
360
+ def forward(self, x):
361
+ if self.data_format == "channels_last":
362
+ return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
363
+ elif self.data_format == "channels_first":
364
+ u = x.mean(1, keepdim=True)
365
+ s = (x - u).pow(2).mean(1, keepdim=True)
366
+ x = (x - u) / torch.sqrt(s + self.eps)
367
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
368
+ return x
369
+
370
+
371
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
372
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
373
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
374
+ def norm_cdf(x):
375
+ # Computes standard normal cumulative distribution function
376
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
377
+
378
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
379
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
380
+ "The distribution of values may be incorrect.",
381
+ stacklevel=2)
382
+
383
+ with torch.no_grad():
384
+ # Values are generated by using a truncated uniform distribution and
385
+ # then using the inverse CDF for the normal distribution.
386
+ # Get upper and lower cdf values
387
+ l = norm_cdf((a - mean) / std)
388
+ u = norm_cdf((b - mean) / std)
389
+
390
+ # Uniformly fill tensor with values from [l, u], then translate to
391
+ # [2l-1, 2u-1].
392
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
393
+
394
+ # Use inverse cdf transform for normal distribution to get truncated
395
+ # standard normal
396
+ tensor.erfinv_()
397
+
398
+ # Transform to proper mean, std
399
+ tensor.mul_(std * math.sqrt(2.))
400
+ tensor.add_(mean)
401
+
402
+ # Clamp to ensure it's in the proper range
403
+ tensor.clamp_(min=a, max=b)
404
+ return tensor
405
+
406
+
407
+ def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
408
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
409
+
410
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
411
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
412
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
413
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
414
+ 'survival rate' as the argument.
415
+
416
+ """
417
+ if drop_prob == 0. or not training:
418
+ return x
419
+ keep_prob = 1 - drop_prob
420
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
421
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
422
+ if keep_prob > 0.0 and scale_by_keep:
423
+ random_tensor.div_(keep_prob)
424
+ return x * random_tensor
425
+
426
+
427
+ class DropPath(nn.Module):
428
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
429
+ """
430
+
431
+ def __init__(self, drop_prob=None, scale_by_keep=True):
432
+ super(DropPath, self).__init__()
433
+ self.drop_prob = drop_prob
434
+ self.scale_by_keep = scale_by_keep
435
+
436
+ def forward(self, x):
437
+ return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
438
+
439
+
440
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
441
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
difpoint/src/modules/warping_network.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ Warping field estimator(W) defined in the paper, which generates a warping field using the implicit
5
+ keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s.
6
+ """
7
+
8
+ from torch import nn
9
+ import torch.nn.functional as F
10
+ from .util import SameBlock2d
11
+ from .dense_motion import DenseMotionNetwork
12
+
13
+
14
+ class WarpingNetwork(nn.Module):
15
+ def __init__(
16
+ self,
17
+ num_kp,
18
+ block_expansion,
19
+ max_features,
20
+ num_down_blocks,
21
+ reshape_channel,
22
+ estimate_occlusion_map=False,
23
+ dense_motion_params=None,
24
+ **kwargs
25
+ ):
26
+ super(WarpingNetwork, self).__init__()
27
+
28
+ self.upscale = kwargs.get('upscale', 1)
29
+ self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True)
30
+
31
+ if dense_motion_params is not None:
32
+ self.dense_motion_network = DenseMotionNetwork(
33
+ num_kp=num_kp,
34
+ feature_channel=reshape_channel,
35
+ estimate_occlusion_map=estimate_occlusion_map,
36
+ **dense_motion_params
37
+ )
38
+ else:
39
+ self.dense_motion_network = None
40
+
41
+ self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True)
42
+ self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1)
43
+
44
+ self.estimate_occlusion_map = estimate_occlusion_map
45
+
46
+ def deform_input(self, inp, deformation):
47
+ return F.grid_sample(inp, deformation, align_corners=False)
48
+
49
+ def forward(self, feature_3d, kp_driving, kp_source):
50
+ if self.dense_motion_network is not None:
51
+ # Feature warper, Transforming feature representation according to deformation and occlusion
52
+ dense_motion = self.dense_motion_network(
53
+ feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source
54
+ )
55
+ if 'occlusion_map' in dense_motion:
56
+ occlusion_map = dense_motion['occlusion_map'] # Bx1x64x64
57
+ else:
58
+ occlusion_map = None
59
+
60
+ deformation = dense_motion['deformation'] # Bx16x64x64x3
61
+ out = self.deform_input(feature_3d, deformation) # Bx32x16x64x64
62
+
63
+ bs, c, d, h, w = out.shape # Bx32x16x64x64
64
+ out = out.view(bs, c * d, h, w) # -> Bx512x64x64
65
+ out = self.third(out) # -> Bx256x64x64
66
+ out = self.fourth(out) # -> Bx256x64x64
67
+
68
+ if self.flag_use_occlusion_map and (occlusion_map is not None):
69
+ out = out * occlusion_map
70
+
71
+ ret_dct = {
72
+ 'occlusion_map': occlusion_map,
73
+ 'deformation': deformation,
74
+ 'out': out,
75
+ }
76
+
77
+ return ret_dct
difpoint/src/utils/__init__.py CHANGED
@@ -1,5 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # @Author : wenshao
3
- # @Email : [email protected]
4
- # @Project : FasterLivePortrait
5
- # @FileName: __init__.py.py
 
 
 
 
 
 
difpoint/src/utils/__pycache__/__init__.cpython-310.pyc CHANGED
Binary files a/difpoint/src/utils/__pycache__/__init__.cpython-310.pyc and b/difpoint/src/utils/__pycache__/__init__.cpython-310.pyc differ
 
difpoint/src/utils/__pycache__/camera.cpython-310.pyc ADDED
Binary file (1.74 kB). View file
 
difpoint/src/utils/__pycache__/crop.cpython-310.pyc CHANGED
Binary files a/difpoint/src/utils/__pycache__/crop.cpython-310.pyc and b/difpoint/src/utils/__pycache__/crop.cpython-310.pyc differ
 
difpoint/src/utils/__pycache__/cropper.cpython-310.pyc ADDED
Binary file (5.49 kB). View file
 
difpoint/src/utils/__pycache__/face_analysis_diy.cpython-310.pyc ADDED
Binary file (3.26 kB). View file
 
difpoint/src/utils/__pycache__/helper.cpython-310.pyc ADDED
Binary file (4.42 kB). View file
 
difpoint/src/utils/__pycache__/hparams.cpython-310.pyc CHANGED
Binary files a/difpoint/src/utils/__pycache__/hparams.cpython-310.pyc and b/difpoint/src/utils/__pycache__/hparams.cpython-310.pyc differ
 
difpoint/src/utils/__pycache__/io.cpython-310.pyc ADDED
Binary file (3.87 kB). View file
 
difpoint/src/utils/__pycache__/landmark_runner.cpython-310.pyc ADDED
Binary file (2.77 kB). View file
 
difpoint/src/utils/__pycache__/retargeting_utils.cpython-310.pyc ADDED
Binary file (1.19 kB). View file
 
difpoint/src/utils/__pycache__/rprint.cpython-310.pyc ADDED
Binary file (348 Bytes). View file
 
difpoint/src/utils/__pycache__/timer.cpython-310.pyc ADDED
Binary file (992 Bytes). View file
 
difpoint/src/utils/__pycache__/video.cpython-310.pyc ADDED
Binary file (6.72 kB). View file
 
difpoint/src/utils/camera.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+
3
+ """
4
+ functions for processing and transforming 3D facial keypoints
5
+ """
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn.functional as F
10
+
11
+ PI = np.pi
12
+
13
+
14
+ def headpose_pred_to_degree(pred):
15
+ """
16
+ pred: (bs, 66) or (bs, 1) or others
17
+ """
18
+ if pred.ndim > 1 and pred.shape[1] == 66:
19
+ # NOTE: note that the average is modified to 97.5
20
+ device = pred.device
21
+ idx_tensor = [idx for idx in range(0, 66)]
22
+ idx_tensor = torch.FloatTensor(idx_tensor).to(device)
23
+ pred = F.softmax(pred, dim=1)
24
+ degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5
25
+
26
+ return degree
27
+
28
+ return pred
29
+
30
+
31
+ def get_rotation_matrix(pitch_, yaw_, roll_):
32
+ """ the input is in degree
33
+ """
34
+ # transform to radian
35
+ pitch = pitch_ / 180 * PI
36
+ yaw = yaw_ / 180 * PI
37
+ roll = roll_ / 180 * PI
38
+
39
+ device = pitch.device
40
+
41
+ if pitch.ndim == 1:
42
+ pitch = pitch.unsqueeze(1)
43
+ if yaw.ndim == 1:
44
+ yaw = yaw.unsqueeze(1)
45
+ if roll.ndim == 1:
46
+ roll = roll.unsqueeze(1)
47
+
48
+ # calculate the euler matrix
49
+ bs = pitch.shape[0]
50
+ ones = torch.ones([bs, 1]).to(device)
51
+ zeros = torch.zeros([bs, 1]).to(device)
52
+ x, y, z = pitch, yaw, roll
53
+
54
+ rot_x = torch.cat([
55
+ ones, zeros, zeros,
56
+ zeros, torch.cos(x), -torch.sin(x),
57
+ zeros, torch.sin(x), torch.cos(x)
58
+ ], dim=1).reshape([bs, 3, 3])
59
+
60
+ rot_y = torch.cat([
61
+ torch.cos(y), zeros, torch.sin(y),
62
+ zeros, ones, zeros,
63
+ -torch.sin(y), zeros, torch.cos(y)
64
+ ], dim=1).reshape([bs, 3, 3])
65
+
66
+ rot_z = torch.cat([
67
+ torch.cos(z), -torch.sin(z), zeros,
68
+ torch.sin(z), torch.cos(z), zeros,
69
+ zeros, zeros, ones
70
+ ], dim=1).reshape([bs, 3, 3])
71
+
72
+ rot = rot_z @ rot_y @ rot_x
73
+ return rot.permute(0, 2, 1) # transpose