Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import numpy as np | |
from skimage import transform as trans | |
arcface_dst = np.array( | |
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], | |
[41.5493, 92.3655], [70.7299, 92.2041]], | |
dtype=np.float32) | |
def estimate_norm(lmk, image_size=112, mode='arcface'): | |
assert lmk.shape == (5, 2) | |
assert image_size % 112 == 0 or image_size % 128 == 0 | |
if image_size % 112 == 0: | |
ratio = float(image_size) / 112.0 | |
diff_x = 0 | |
else: | |
ratio = float(image_size) / 128.0 | |
diff_x = 8.0 * ratio | |
dst = arcface_dst * ratio | |
dst[:, 0] += diff_x | |
tform = trans.SimilarityTransform() | |
tform.estimate(lmk, dst) | |
M = tform.params[0:2, :] | |
return M | |
def norm_crop(img, landmark, image_size=112, mode='arcface'): | |
M = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
return warped | |
def norm_crop2(img, landmark, image_size=112, mode='arcface'): | |
M = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
return warped, M | |
def square_crop(im, S): | |
if im.shape[0] > im.shape[1]: | |
height = S | |
width = int(float(im.shape[1]) / im.shape[0] * S) | |
scale = float(S) / im.shape[0] | |
else: | |
width = S | |
height = int(float(im.shape[0]) / im.shape[1] * S) | |
scale = float(S) / im.shape[1] | |
resized_im = cv2.resize(im, (width, height)) | |
det_im = np.zeros((S, S, 3), dtype=np.uint8) | |
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im | |
return det_im, scale | |
def transform(data, center, output_size, scale, rotation): | |
scale_ratio = scale | |
rot = float(rotation) * np.pi / 180.0 | |
# translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | |
t1 = trans.SimilarityTransform(scale=scale_ratio) | |
cx = center[0] * scale_ratio | |
cy = center[1] * scale_ratio | |
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | |
t3 = trans.SimilarityTransform(rotation=rot) | |
t4 = trans.SimilarityTransform(translation=(output_size / 2, | |
output_size / 2)) | |
t = t1 + t2 + t3 + t4 | |
M = t.params[0:2] | |
cropped = cv2.warpAffine(data, | |
M, (output_size, output_size), | |
borderValue=0.0) | |
return cropped, M | |
def trans_points2d(pts, M): | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i] = new_pt[0:2] | |
return new_pts | |
def trans_points3d(pts, M): | |
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | |
# print(scale) | |
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | |
for i in range(pts.shape[0]): | |
pt = pts[i] | |
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | |
new_pt = np.dot(M, new_pt) | |
# print('new_pt', new_pt.shape, new_pt) | |
new_pts[i][0:2] = new_pt[0:2] | |
new_pts[i][2] = pts[i][2] * scale | |
return new_pts | |
def trans_points(pts, M): | |
if pts.shape[1] == 2: | |
return trans_points2d(pts, M) | |
else: | |
return trans_points3d(pts, M) | |