Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
def set_requires_grad(module: nn.Module, requires_grad: bool): | |
for p in module.parameters(): | |
p.requires_grad_(requires_grad) | |
def compute_distance_transform(mask: torch.Tensor): | |
image_size = mask.shape[-1] | |
distance_transform = torch.stack([ | |
torch.from_numpy(cv2.distanceTransform( | |
(1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3 | |
) / (image_size / 2)) | |
for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8) | |
]).unsqueeze(1).clip(0, 1).to(mask.device) | |
return distance_transform | |
def default(x, d): | |
return d if x is None else x | |
def get_custom_betas(beta_start: float, beta_end: float, warmup_frac: float = 0.3, num_train_timesteps: int = 1000): | |
"""Custom beta schedule""" | |
betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) | |
warmup_frac = 0.3 | |
warmup_time = int(num_train_timesteps * warmup_frac) | |
warmup_steps = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) | |
warmup_time = min(warmup_time, num_train_timesteps) | |
betas[:warmup_time] = warmup_steps[:warmup_time] | |
return betas | |