File size: 3,526 Bytes
02f8487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import cv2
import math
import numpy as np
from skimage import transform as trans


def transform(data, center, output_size, scale, rotation):
    scale_ratio = scale
    rot = float(rotation) * np.pi / 180.0
    # translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
    t1 = trans.SimilarityTransform(scale=scale_ratio)
    cx = center[0] * scale_ratio
    cy = center[1] * scale_ratio
    t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
    t3 = trans.SimilarityTransform(rotation=rot)
    t4 = trans.SimilarityTransform(translation=(output_size / 2,
                                                output_size / 2))
    t = t1 + t2 + t3 + t4
    M = t.params[0:2]
    cropped = cv2.warpAffine(data,
                             M, (output_size, output_size),
                             borderValue=0.0)
    return cropped, M


def trans_points2d(pts, M):
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        # print('new_pt', new_pt.shape, new_pt)
        new_pts[i] = new_pt[0:2]

    return new_pts


def trans_points3d(pts, M):
    scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
    # print(scale)
    new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
    for i in range(pts.shape[0]):
        pt = pts[i]
        new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
        new_pt = np.dot(M, new_pt)
        # print('new_pt', new_pt.shape, new_pt)
        new_pts[i][0:2] = new_pt[0:2]
        new_pts[i][2] = pts[i][2] * scale

    return new_pts


def trans_points(pts, M):
    if pts.shape[1] == 2:
        return trans_points2d(pts, M)
    else:
        return trans_points3d(pts, M)


def estimate_affine_matrix_3d23d(X, Y):
    ''' Using least-squares solution 

    Args:

        X: [n, 3]. 3d points(fixed)

        Y: [n, 3]. corresponding 3d points(moving). Y = PX

    Returns:

        P_Affine: (3, 4). Affine camera matrix (the third row is [0, 0, 0, 1]).

    '''
    X_homo = np.hstack((X, np.ones([X.shape[0], 1])))  # n x 4
    P = np.linalg.lstsq(X_homo, Y)[0].T  # Affine matrix. 3 x 4
    return P


def P2sRt(P):
    ''' decompositing camera matrix P

    Args: 

        P: (3, 4). Affine Camera Matrix.

    Returns:

        s: scale factor.

        R: (3, 3). rotation matrix.

        t: (3,). translation. 

    '''
    t = P[:, 3]
    R1 = P[0:1, :3]
    R2 = P[1:2, :3]
    s = (np.linalg.norm(R1) + np.linalg.norm(R2)) / 2.0
    r1 = R1 / np.linalg.norm(R1)
    r2 = R2 / np.linalg.norm(R2)
    r3 = np.cross(r1, r2)

    R = np.concatenate((r1, r2, r3), 0)
    return s, R, t


def matrix2angle(R):
    ''' get three Euler angles from Rotation Matrix

    Args:

        R: (3,3). rotation matrix

    Returns:

        x: pitch

        y: yaw

        z: roll

    '''
    sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])

    singular = sy < 1e-6

    if not singular:
        x = math.atan2(R[2, 1], R[2, 2])
        y = math.atan2(-R[2, 0], sy)
        z = math.atan2(R[1, 0], R[0, 0])
    else:
        x = math.atan2(-R[1, 2], R[1, 1])
        y = math.atan2(-R[2, 0], sy)
        z = 0

    # rx, ry, rz = np.rad2deg(x), np.rad2deg(y), np.rad2deg(z)
    rx, ry, rz = x * 180 / np.pi, y * 180 / np.pi, z * 180 / np.pi
    return rx, ry, rz