Spaces:
Sleeping
Sleeping
File size: 15,416 Bytes
02f8487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
# -*- coding: utf-8 -*-
# @Author : wenshao
# @Email : [email protected]
# @Project : FasterLivePortrait
# @FileName: gradio_live_portrait_pipeline.py
import pdb
import gradio as gr
import cv2
import datetime
import os
import time
from tqdm import tqdm
import subprocess
import numpy as np
from .faster_live_portrait_pipeline import FasterLivePortraitPipeline
from ..utils.utils import video_has_audio
from ..utils.utils import resize_to_limit, prepare_paste_back, get_rotation_matrix, calc_lip_close_ratio, \
calc_eye_close_ratio, transform_keypoint, concat_feat
from ..utils.crop import crop_image, parse_bbox_from_landmark, crop_image_by_bbox, paste_back, paste_back_pytorch
from src.utils import utils
import platform
import torch
from PIL import Image
if platform.system().lower() == 'windows':
FFMPEG = "third_party/ffmpeg-7.0.1-full_build/bin/ffmpeg.exe"
else:
FFMPEG = "ffmpeg"
class GradioLivePortraitPipeline(FasterLivePortraitPipeline):
def __init__(self, cfg, **kwargs):
super(GradioLivePortraitPipeline, self).__init__(cfg, **kwargs)
def update_cfg(self, args_user):
update_ret = False
for key in args_user:
if key in self.cfg.infer_params:
if self.cfg.infer_params[key] != args_user[key]:
update_ret = True
print("update infer cfg {} from {} to {}".format(key, self.cfg.infer_params[key], args_user[key]))
self.cfg.infer_params[key] = args_user[key]
elif key in self.cfg.crop_params:
if self.cfg.crop_params[key] != args_user[key]:
update_ret = True
print("update crop cfg {} from {} to {}".format(key, self.cfg.crop_params[key], args_user[key]))
self.cfg.crop_params[key] = args_user[key]
else:
if key in self.cfg.infer_params and self.cfg.infer_params[key] != args_user[key]:
update_ret = True
print("add {}:{} to infer cfg".format(key, args_user[key]))
self.cfg.infer_params[key] = args_user[key]
return update_ret
def execute_video(
self,
input_source_image_path=None,
input_source_video_path=None,
input_driving_video_path=None,
flag_relative_input=True,
flag_do_crop_input=True,
flag_remap_input=True,
driving_multiplier=1.0,
flag_stitching=True,
flag_crop_driving_video_input=True,
flag_video_editing_head_rotation=False,
flag_is_animal=False,
scale=2.3,
vx_ratio=0.0,
vy_ratio=-0.125,
scale_crop_driving_video=2.2,
vx_ratio_crop_driving_video=0.0,
vy_ratio_crop_driving_video=-0.1,
driving_smooth_observation_variance=1e-7,
tab_selection=None,
):
""" for video driven potrait animation
"""
if tab_selection == 'Image':
input_source_path = input_source_image_path
elif tab_selection == 'Video':
input_source_path = input_source_video_path
else:
input_source_path = input_source_image_path
if flag_is_animal != self.is_animal:
self.init_models(is_animal=flag_is_animal)
if input_source_path is not None and input_driving_video_path is not None:
args_user = {
'source': input_source_path,
'driving': input_driving_video_path,
'flag_relative_motion': flag_relative_input,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
'driving_multiplier': driving_multiplier,
'flag_stitching': flag_stitching,
'flag_crop_driving_video': flag_crop_driving_video_input,
'flag_video_editing_head_rotation': flag_video_editing_head_rotation,
'src_scale': scale,
'src_vx_ratio': vx_ratio,
'src_vy_ratio': vy_ratio,
'dri_scale': scale_crop_driving_video,
'dri_vx_ratio': vx_ratio_crop_driving_video,
'dri_vy_ratio': vy_ratio_crop_driving_video,
'driving_smooth_observation_variance': driving_smooth_observation_variance,
}
# update config from user input
update_ret = self.update_cfg(args_user)
# video driven animation
video_path, video_path_concat, total_time = self.run_local(input_driving_video_path, input_source_path,
update_ret=update_ret)
gr.Info(f"Run successfully! Cost: {total_time} seconds!", duration=3)
return video_path, video_path_concat,
else:
raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5)
def run_local(self, driving_video_path, source_path, **kwargs):
t00 = time.time()
if self.source_path != source_path or kwargs.get("update_ret", False):
# 如果不一样要重新初始化变量
self.init_vars(**kwargs)
ret = self.prepare_source(source_path)
if not ret:
raise gr.Error(f"Error in processing source:{source_path} 💥!", duration=5)
vcap = cv2.VideoCapture(driving_video_path)
if self.is_source_video:
duration, fps = utils.get_video_info(self.source_path)
fps = int(fps)
else:
fps = int(vcap.get(cv2.CAP_PROP_FPS))
dframe = int(vcap.get(cv2.CAP_PROP_FRAME_COUNT))
if self.is_source_video:
max_frame = min(dframe, len(self.src_imgs))
else:
max_frame = dframe
h, w = self.src_imgs[0].shape[:2]
save_dir = f"./results/{datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S')}"
os.makedirs(save_dir, exist_ok=True)
# render output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
vsave_crop_path = os.path.join(save_dir,
f"{os.path.basename(source_path)}-{os.path.basename(driving_video_path)}-crop.mp4")
vout_crop = cv2.VideoWriter(vsave_crop_path, fourcc, fps, (512 * 2, 512))
vsave_org_path = os.path.join(save_dir,
f"{os.path.basename(source_path)}-{os.path.basename(driving_video_path)}-org.mp4")
vout_org = cv2.VideoWriter(vsave_org_path, fourcc, fps, (w, h))
infer_times = []
for i in tqdm(range(max_frame)):
ret, frame = vcap.read()
if not ret:
break
t0 = time.time()
first_frame = i == 0
if self.is_source_video:
dri_crop, out_crop, out_org = self.run(frame, self.src_imgs[i], self.src_infos[i],
first_frame=first_frame)
else:
dri_crop, out_crop, out_org = self.run(frame, self.src_imgs[0], self.src_infos[0],
first_frame=first_frame)
if out_crop is None:
print(f"no face in driving frame:{i}")
continue
infer_times.append(time.time() - t0)
dri_crop = cv2.resize(dri_crop, (512, 512))
out_crop = np.concatenate([dri_crop, out_crop], axis=1)
out_crop = cv2.cvtColor(out_crop, cv2.COLOR_RGB2BGR)
vout_crop.write(out_crop)
out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
vout_org.write(out_org)
total_time = time.time() - t00
vcap.release()
vout_crop.release()
vout_org.release()
if video_has_audio(driving_video_path):
vsave_crop_path_new = os.path.splitext(vsave_crop_path)[0] + "-audio.mp4"
vsave_org_path_new = os.path.splitext(vsave_org_path)[0] + "-audio.mp4"
if self.is_source_video:
duration, fps = utils.get_video_info(vsave_crop_path)
subprocess.call(
[FFMPEG, "-i", vsave_crop_path, "-i", driving_video_path,
"-b:v", "10M", "-c:v", "libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac", "-pix_fmt", "yuv420p",
"-shortest", # 以最短的流为基准
"-t", str(duration), # 设置时长
"-r", str(fps), # 设置帧率
vsave_crop_path_new, "-y"])
subprocess.call(
[FFMPEG, "-i", vsave_org_path, "-i", driving_video_path,
"-b:v", "10M", "-c:v", "libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac", "-pix_fmt", "yuv420p",
"-shortest", # 以最短的流为基准
"-t", str(duration), # 设置时长
"-r", str(fps), # 设置帧率
vsave_org_path_new, "-y"])
else:
subprocess.call(
[FFMPEG, "-i", vsave_crop_path, "-i", driving_video_path,
"-b:v", "10M", "-c:v",
"libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac",
"-pix_fmt", "yuv420p", vsave_crop_path_new, "-y", "-shortest"])
subprocess.call(
[FFMPEG, "-i", vsave_org_path, "-i", driving_video_path,
"-b:v", "10M", "-c:v",
"libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac",
"-pix_fmt", "yuv420p", vsave_org_path_new, "-y", "-shortest"])
return vsave_org_path_new, vsave_crop_path_new, total_time
else:
return vsave_org_path, vsave_crop_path, total_time
def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True):
""" for single image retargeting
"""
# disposable feature
f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
self.prepare_retargeting(input_image, flag_do_crop)
if input_eye_ratio is None or input_lip_ratio is None:
raise gr.Error("Invalid ratio input 💥!", duration=5)
else:
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
combined_eye_ratio_tensor = self.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user)
eyes_delta = self.retarget_eye(x_s_user, combined_eye_ratio_tensor)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
combined_lip_ratio_tensor = self.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user)
lip_delta = self.retarget_lip(x_s_user, combined_lip_ratio_tensor)
num_kp = x_s_user.shape[1]
# default: use x_s
x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
# D(W(f_s; x_s, x′_d))
out = self.model_dict["warping_spade"].predict(f_s_user, x_s_user, x_d_new)
img_rgb = torch.from_numpy(img_rgb).to(self.device)
out_to_ori_blend = paste_back_pytorch(out, crop_M_c2o, img_rgb, mask_ori)
gr.Info("Run successfully!", duration=2)
return out.to(dtype=torch.uint8).cpu().numpy(), out_to_ori_blend.to(dtype=torch.uint8).cpu().numpy()
def prepare_retargeting(self, input_image, flag_do_crop=True):
""" for single image retargeting
"""
if input_image is not None:
######## process source portrait ########
img_bgr = cv2.imread(input_image, cv2.IMREAD_COLOR)
img_bgr = resize_to_limit(img_bgr, self.cfg.infer_params.source_max_dim,
self.cfg.infer_params.source_division)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
if self.is_animal:
raise gr.Error("Animal Model Not Supported in Face Retarget 💥!", duration=5)
else:
src_faces = self.model_dict["face_analysis"].predict(img_bgr)
if len(src_faces) == 0:
raise gr.Error("No face detect in image 💥!", duration=5)
src_faces = src_faces[:1]
crop_infos = []
for i in range(len(src_faces)):
# NOTE: temporarily only pick the first face, to support multiple face in the future
lmk = src_faces[i]
# crop the face
ret_dct = crop_image(
img_rgb, # ndarray
lmk, # 106x2 or Nx2
dsize=self.cfg.crop_params.src_dsize,
scale=self.cfg.crop_params.src_scale,
vx_ratio=self.cfg.crop_params.src_vx_ratio,
vy_ratio=self.cfg.crop_params.src_vy_ratio,
)
lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
ret_dct["lmk_crop"] = lmk
ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / self.cfg.crop_params.src_dsize
# update a 256x256 version for network input
ret_dct["img_crop_256x256"] = cv2.resize(
ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA
)
ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / self.cfg.crop_params.src_dsize
crop_infos.append(ret_dct)
crop_info = crop_infos[0]
if flag_do_crop:
I_s = crop_info['img_crop_256x256'].copy()
else:
I_s = img_rgb.copy()
pitch, yaw, roll, t, exp, scale, kp = self.model_dict["motion_extractor"].predict(I_s)
x_s_info = {
"pitch": pitch,
"yaw": yaw,
"roll": roll,
"t": t,
"exp": exp,
"scale": scale,
"kp": kp
}
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
############################################
f_s_user = self.model_dict["app_feat_extractor"].predict(I_s)
x_s_user = transform_keypoint(pitch, yaw, roll, t, exp, scale, kp)
source_lmk_user = crop_info['lmk_crop']
crop_M_c2o = crop_info['M_c2o']
crop_M_c2o = torch.from_numpy(crop_M_c2o).to(self.device)
mask_ori = prepare_paste_back(self.mask_crop, crop_info['M_c2o'],
dsize=(img_rgb.shape[1], img_rgb.shape[0]))
mask_ori = torch.from_numpy(mask_ori).to(self.device).float()
return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
else:
# when press the clear button, go here
raise gr.Error("The retargeting input hasn't been prepared yet 💥!", duration=5)
|