File size: 15,416 Bytes
02f8487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# -*- coding: utf-8 -*-
# @Author  : wenshao
# @Email   : [email protected]
# @Project : FasterLivePortrait
# @FileName: gradio_live_portrait_pipeline.py
import pdb

import gradio as gr
import cv2
import datetime
import os
import time
from tqdm import tqdm
import subprocess
import numpy as np
from .faster_live_portrait_pipeline import FasterLivePortraitPipeline
from ..utils.utils import video_has_audio
from ..utils.utils import resize_to_limit, prepare_paste_back, get_rotation_matrix, calc_lip_close_ratio, \
    calc_eye_close_ratio, transform_keypoint, concat_feat
from ..utils.crop import crop_image, parse_bbox_from_landmark, crop_image_by_bbox, paste_back, paste_back_pytorch
from src.utils import utils
import platform
import torch
from PIL import Image

if platform.system().lower() == 'windows':
    FFMPEG = "third_party/ffmpeg-7.0.1-full_build/bin/ffmpeg.exe"
else:
    FFMPEG = "ffmpeg"


class GradioLivePortraitPipeline(FasterLivePortraitPipeline):
    def __init__(self, cfg, **kwargs):
        super(GradioLivePortraitPipeline, self).__init__(cfg, **kwargs)

    def update_cfg(self, args_user):
        update_ret = False
        for key in args_user:
            if key in self.cfg.infer_params:
                if self.cfg.infer_params[key] != args_user[key]:
                    update_ret = True
                print("update infer cfg {} from {} to {}".format(key, self.cfg.infer_params[key], args_user[key]))
                self.cfg.infer_params[key] = args_user[key]
            elif key in self.cfg.crop_params:
                if self.cfg.crop_params[key] != args_user[key]:
                    update_ret = True
                print("update crop cfg {} from {} to {}".format(key, self.cfg.crop_params[key], args_user[key]))
                self.cfg.crop_params[key] = args_user[key]
            else:
                if key in self.cfg.infer_params and self.cfg.infer_params[key] != args_user[key]:
                    update_ret = True
                print("add {}:{} to infer cfg".format(key, args_user[key]))
                self.cfg.infer_params[key] = args_user[key]
        return update_ret

    def execute_video(

            self,

            input_source_image_path=None,

            input_source_video_path=None,

            input_driving_video_path=None,

            flag_relative_input=True,

            flag_do_crop_input=True,

            flag_remap_input=True,

            driving_multiplier=1.0,

            flag_stitching=True,

            flag_crop_driving_video_input=True,

            flag_video_editing_head_rotation=False,

            flag_is_animal=False,

            scale=2.3,

            vx_ratio=0.0,

            vy_ratio=-0.125,

            scale_crop_driving_video=2.2,

            vx_ratio_crop_driving_video=0.0,

            vy_ratio_crop_driving_video=-0.1,

            driving_smooth_observation_variance=1e-7,

            tab_selection=None,

    ):
        """ for video driven potrait animation

        """
        if tab_selection == 'Image':
            input_source_path = input_source_image_path
        elif tab_selection == 'Video':
            input_source_path = input_source_video_path
        else:
            input_source_path = input_source_image_path

        if flag_is_animal != self.is_animal:
            self.init_models(is_animal=flag_is_animal)

        if input_source_path is not None and input_driving_video_path is not None:
            args_user = {
                'source': input_source_path,
                'driving': input_driving_video_path,
                'flag_relative_motion': flag_relative_input,
                'flag_do_crop': flag_do_crop_input,
                'flag_pasteback': flag_remap_input,
                'driving_multiplier': driving_multiplier,
                'flag_stitching': flag_stitching,
                'flag_crop_driving_video': flag_crop_driving_video_input,
                'flag_video_editing_head_rotation': flag_video_editing_head_rotation,
                'src_scale': scale,
                'src_vx_ratio': vx_ratio,
                'src_vy_ratio': vy_ratio,
                'dri_scale': scale_crop_driving_video,
                'dri_vx_ratio': vx_ratio_crop_driving_video,
                'dri_vy_ratio': vy_ratio_crop_driving_video,
                'driving_smooth_observation_variance': driving_smooth_observation_variance,
            }
            # update config from user input
            update_ret = self.update_cfg(args_user)
            # video driven animation
            video_path, video_path_concat, total_time = self.run_local(input_driving_video_path, input_source_path,
                                                                       update_ret=update_ret)
            gr.Info(f"Run successfully! Cost: {total_time} seconds!", duration=3)
            return video_path, video_path_concat,
        else:
            raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5)

    def run_local(self, driving_video_path, source_path, **kwargs):
        t00 = time.time()

        if self.source_path != source_path or kwargs.get("update_ret", False):
            # 如果不一样要重新初始化变量
            self.init_vars(**kwargs)
            ret = self.prepare_source(source_path)
            if not ret:
                raise gr.Error(f"Error in processing source:{source_path} 💥!", duration=5)

        vcap = cv2.VideoCapture(driving_video_path)
        if self.is_source_video:
            duration, fps = utils.get_video_info(self.source_path)
            fps = int(fps)
        else:
            fps = int(vcap.get(cv2.CAP_PROP_FPS))

        dframe = int(vcap.get(cv2.CAP_PROP_FRAME_COUNT))
        if self.is_source_video:
            max_frame = min(dframe, len(self.src_imgs))
        else:
            max_frame = dframe
        h, w = self.src_imgs[0].shape[:2]
        save_dir = f"./results/{datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S')}"
        os.makedirs(save_dir, exist_ok=True)

        # render output video
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        vsave_crop_path = os.path.join(save_dir,
                                       f"{os.path.basename(source_path)}-{os.path.basename(driving_video_path)}-crop.mp4")
        vout_crop = cv2.VideoWriter(vsave_crop_path, fourcc, fps, (512 * 2, 512))
        vsave_org_path = os.path.join(save_dir,
                                      f"{os.path.basename(source_path)}-{os.path.basename(driving_video_path)}-org.mp4")
        vout_org = cv2.VideoWriter(vsave_org_path, fourcc, fps, (w, h))

        infer_times = []
        for i in tqdm(range(max_frame)):
            ret, frame = vcap.read()
            if not ret:
                break
            t0 = time.time()
            first_frame = i == 0
            if self.is_source_video:
                dri_crop, out_crop, out_org = self.run(frame, self.src_imgs[i], self.src_infos[i],
                                                       first_frame=first_frame)
            else:
                dri_crop, out_crop, out_org = self.run(frame, self.src_imgs[0], self.src_infos[0],
                                                       first_frame=first_frame)
            if out_crop is None:
                print(f"no face in driving frame:{i}")
                continue
            infer_times.append(time.time() - t0)
            dri_crop = cv2.resize(dri_crop, (512, 512))
            out_crop = np.concatenate([dri_crop, out_crop], axis=1)
            out_crop = cv2.cvtColor(out_crop, cv2.COLOR_RGB2BGR)
            vout_crop.write(out_crop)
            out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
            vout_org.write(out_org)
        total_time = time.time() - t00
        vcap.release()
        vout_crop.release()
        vout_org.release()

        if video_has_audio(driving_video_path):
            vsave_crop_path_new = os.path.splitext(vsave_crop_path)[0] + "-audio.mp4"
            vsave_org_path_new = os.path.splitext(vsave_org_path)[0] + "-audio.mp4"
            if self.is_source_video:
                duration, fps = utils.get_video_info(vsave_crop_path)
                subprocess.call(
                    [FFMPEG, "-i", vsave_crop_path, "-i", driving_video_path,
                     "-b:v", "10M", "-c:v", "libx264", "-map", "0:v", "-map", "1:a",
                     "-c:a", "aac", "-pix_fmt", "yuv420p",
                     "-shortest",  # 以最短的流为基准
                     "-t", str(duration),  # 设置时长
                     "-r", str(fps),  # 设置帧率
                     vsave_crop_path_new, "-y"])
                subprocess.call(
                    [FFMPEG, "-i", vsave_org_path, "-i", driving_video_path,
                     "-b:v", "10M", "-c:v", "libx264", "-map", "0:v", "-map", "1:a",
                     "-c:a", "aac", "-pix_fmt", "yuv420p",
                     "-shortest",  # 以最短的流为基准
                     "-t", str(duration),  # 设置时长
                     "-r", str(fps),  # 设置帧率
                     vsave_org_path_new, "-y"])
            else:
                subprocess.call(
                    [FFMPEG, "-i", vsave_crop_path, "-i", driving_video_path,
                     "-b:v", "10M", "-c:v",
                     "libx264", "-map", "0:v", "-map", "1:a",
                     "-c:a", "aac",
                     "-pix_fmt", "yuv420p", vsave_crop_path_new, "-y", "-shortest"])
                subprocess.call(
                    [FFMPEG, "-i", vsave_org_path, "-i", driving_video_path,
                     "-b:v", "10M", "-c:v",
                     "libx264", "-map", "0:v", "-map", "1:a",
                     "-c:a", "aac",
                     "-pix_fmt", "yuv420p", vsave_org_path_new, "-y", "-shortest"])

            return vsave_org_path_new, vsave_crop_path_new, total_time
        else:
            return vsave_org_path, vsave_crop_path, total_time

    def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True):
        """ for single image retargeting

        """
        # disposable feature
        f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
            self.prepare_retargeting(input_image, flag_do_crop)

        if input_eye_ratio is None or input_lip_ratio is None:
            raise gr.Error("Invalid ratio input 💥!", duration=5)
        else:
            # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
            combined_eye_ratio_tensor = self.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user)
            eyes_delta = self.retarget_eye(x_s_user, combined_eye_ratio_tensor)
            # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
            combined_lip_ratio_tensor = self.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user)
            lip_delta = self.retarget_lip(x_s_user, combined_lip_ratio_tensor)
            num_kp = x_s_user.shape[1]
            # default: use x_s
            x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
            # D(W(f_s; x_s, x′_d))
            out = self.model_dict["warping_spade"].predict(f_s_user, x_s_user, x_d_new)
            img_rgb = torch.from_numpy(img_rgb).to(self.device)
            out_to_ori_blend = paste_back_pytorch(out, crop_M_c2o, img_rgb, mask_ori)
            gr.Info("Run successfully!", duration=2)
            return out.to(dtype=torch.uint8).cpu().numpy(), out_to_ori_blend.to(dtype=torch.uint8).cpu().numpy()

    def prepare_retargeting(self, input_image, flag_do_crop=True):
        """ for single image retargeting

        """
        if input_image is not None:
            ######## process source portrait ########
            img_bgr = cv2.imread(input_image, cv2.IMREAD_COLOR)
            img_bgr = resize_to_limit(img_bgr, self.cfg.infer_params.source_max_dim,
                                      self.cfg.infer_params.source_division)
            img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

            if self.is_animal:
                raise gr.Error("Animal Model Not Supported in Face Retarget 💥!", duration=5)
            else:
                src_faces = self.model_dict["face_analysis"].predict(img_bgr)

            if len(src_faces) == 0:
                raise gr.Error("No face detect in image 💥!", duration=5)
            src_faces = src_faces[:1]
            crop_infos = []
            for i in range(len(src_faces)):
                # NOTE: temporarily only pick the first face, to support multiple face in the future
                lmk = src_faces[i]
                # crop the face
                ret_dct = crop_image(
                    img_rgb,  # ndarray
                    lmk,  # 106x2 or Nx2
                    dsize=self.cfg.crop_params.src_dsize,
                    scale=self.cfg.crop_params.src_scale,
                    vx_ratio=self.cfg.crop_params.src_vx_ratio,
                    vy_ratio=self.cfg.crop_params.src_vy_ratio,
                )

                lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
                ret_dct["lmk_crop"] = lmk
                ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / self.cfg.crop_params.src_dsize

                # update a 256x256 version for network input
                ret_dct["img_crop_256x256"] = cv2.resize(
                    ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA
                )
                ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / self.cfg.crop_params.src_dsize
                crop_infos.append(ret_dct)
            crop_info = crop_infos[0]
            if flag_do_crop:
                I_s = crop_info['img_crop_256x256'].copy()
            else:
                I_s = img_rgb.copy()
            pitch, yaw, roll, t, exp, scale, kp = self.model_dict["motion_extractor"].predict(I_s)
            x_s_info = {
                "pitch": pitch,
                "yaw": yaw,
                "roll": roll,
                "t": t,
                "exp": exp,
                "scale": scale,
                "kp": kp
            }
            R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
            ############################################
            f_s_user = self.model_dict["app_feat_extractor"].predict(I_s)
            x_s_user = transform_keypoint(pitch, yaw, roll, t, exp, scale, kp)
            source_lmk_user = crop_info['lmk_crop']
            crop_M_c2o = crop_info['M_c2o']
            crop_M_c2o = torch.from_numpy(crop_M_c2o).to(self.device)
            mask_ori = prepare_paste_back(self.mask_crop, crop_info['M_c2o'],
                                          dsize=(img_rgb.shape[1], img_rgb.shape[0]))
            mask_ori = torch.from_numpy(mask_ori).to(self.device).float()
            return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
        else:
            # when press the clear button, go here
            raise gr.Error("The retargeting input hasn't been prepared yet 💥!", duration=5)