File size: 21,975 Bytes
02f8487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# -*- coding: utf-8 -*-
# @Author  : wenshao
# @Email   : [email protected]
# @Project : FasterLivePortrait
# @FileName: faster_live_portrait_pipeline.py

import copy
import pdb
import time
import traceback
from PIL import Image
import cv2
from tqdm import tqdm
import numpy as np
import torch

from .. import models
from ..utils.crop import crop_image, parse_bbox_from_landmark, crop_image_by_bbox, paste_back, paste_back_pytorch
from ..utils.utils import resize_to_limit, prepare_paste_back, get_rotation_matrix, calc_lip_close_ratio, \
    calc_eye_close_ratio, transform_keypoint, concat_feat
from difpoint.src.utils import utils


class FasterLivePortraitPipeline:
    def __init__(self, cfg, **kwargs):
        self.cfg = cfg
        self.init(**kwargs)

    def init(self, **kwargs):
        self.init_vars(**kwargs)
        self.init_models(**kwargs)

    def clean_models(self, **kwargs):
        """

        clean model

        :param kwargs:

        :return:

        """
        for key in list(self.model_dict.keys()):
            del self.model_dict[key]
        self.model_dict = {}

    def init_models(self, **kwargs):
        if not kwargs.get("is_animal", False):
            print("load Human Model >>>")
            self.is_animal = False
            self.model_dict = {}
            for model_name in self.cfg.models:
                print(f"loading model: {model_name}")
                print(self.cfg.models[model_name])
                self.model_dict[model_name] = getattr(models, self.cfg.models[model_name]["name"])(
                    **self.cfg.models[model_name])
        else:
            print("load Animal Model >>>")
            self.is_animal = True
            self.model_dict = {}
            from src.utils.animal_landmark_runner import XPoseRunner
            from src.utils.utils import make_abs_path

            xpose_ckpt_path: str = make_abs_path("../difpoint/checkpoints/liveportrait_animal_onnx/xpose.pth")
            xpose_config_file_path: str = make_abs_path("models/XPose/config_model/UniPose_SwinT.py")
            xpose_embedding_cache_path: str = make_abs_path('../difpoint/checkpoints/liveportrait_animal_onnx/clip_embedding')
            self.model_dict["xpose"] = XPoseRunner(model_config_path=xpose_config_file_path,
                                                   model_checkpoint_path=xpose_ckpt_path,
                                                   embeddings_cache_path=xpose_embedding_cache_path,
                                                   flag_use_half_precision=True)
            for model_name in self.cfg.animal_models:
                print(f"loading model: {model_name}")
                print(self.cfg.animal_models[model_name])
                self.model_dict[model_name] = getattr(models, self.cfg.animal_models[model_name]["name"])(
                    **self.cfg.animal_models[model_name])

    def init_vars(self, **kwargs):
        self.mask_crop = cv2.imread(self.cfg.infer_params.mask_crop_path, cv2.IMREAD_COLOR)
        self.frame_id = 0
        self.src_lmk_pre = None
        self.R_d_0 = None
        self.x_d_0_info = None
        self.R_d_smooth = utils.OneEuroFilter(4, 1)
        self.exp_smooth = utils.OneEuroFilter(4, 1)

        ## 记录source的信息
        self.source_path = None
        self.src_infos = []
        self.src_imgs = []
        self.is_source_video = False

        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

    def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
        c_s_eyes = calc_eye_close_ratio(source_lmk[None])
        c_d_eyes_i = np.array(c_d_eyes_i).reshape(1, 1)
        # [c_s,eyes, c_d,eyes,i]
        combined_eye_ratio_tensor = np.concatenate([c_s_eyes, c_d_eyes_i], axis=1)
        return combined_eye_ratio_tensor

    def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
        c_s_lip = calc_lip_close_ratio(source_lmk[None])
        c_d_lip_i = np.array(c_d_lip_i).reshape(1, 1)  # 1x1
        # [c_s,lip, c_d,lip,i]
        combined_lip_ratio_tensor = np.concatenate([c_s_lip, c_d_lip_i], axis=1)  # 1x2
        return combined_lip_ratio_tensor

    def prepare_source(self, source_path, **kwargs):
        print(f"process source:{source_path} >>>>>>>>")
        try:
            if utils.is_image(source_path):
                self.is_source_video = False
            elif utils.is_video(source_path):
                self.is_source_video = True
            else:  # source input is an unknown format
                raise Exception(f"Unknown source format: {source_path}")

            if self.is_source_video:
                src_imgs_bgr = []
                src_vcap = cv2.VideoCapture(source_path)
                while True:
                    ret, frame = src_vcap.read()
                    if not ret:
                        break
                    src_imgs_bgr.append(frame)
                src_vcap.release()
            else:
                img_bgr = cv2.imread(source_path, cv2.IMREAD_COLOR)
                src_imgs_bgr = [img_bgr]

            self.src_imgs = []
            self.src_infos = []
            self.source_path = source_path

            for ii, img_bgr in tqdm(enumerate(src_imgs_bgr), total=len(src_imgs_bgr)):
                img_bgr = resize_to_limit(img_bgr, self.cfg.infer_params.source_max_dim,
                                          self.cfg.infer_params.source_division)
                img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
                src_faces = []
                if self.is_animal:
                    with torch.no_grad():
                        img_rgb_pil = Image.fromarray(img_rgb)
                        lmk = self.model_dict["xpose"].run(
                            img_rgb_pil,
                            'face',
                            'animal_face',
                            0,
                            0
                        )
                    if lmk is None:
                        continue
                    self.src_imgs.append(img_rgb)
                    src_faces.append(lmk)
                else:
                    src_faces = self.model_dict["face_analysis"].predict(img_bgr)
                    if len(src_faces) == 0:
                        print("No face detected in the this image.")
                        continue
                    self.src_imgs.append(img_rgb)
                    # 如果是实时,只关注最大的那张脸
                    if kwargs.get("realtime", False):
                        src_faces = src_faces[:1]

                crop_infos = []
                for i in range(len(src_faces)):
                    # NOTE: temporarily only pick the first face, to support multiple face in the future
                    lmk = src_faces[i]
                    # crop the face
                    ret_dct = crop_image(
                        img_rgb,  # ndarray
                        lmk,  # 106x2 or Nx2
                        dsize=self.cfg.crop_params.src_dsize,
                        scale=self.cfg.crop_params.src_scale,
                        vx_ratio=self.cfg.crop_params.src_vx_ratio,
                        vy_ratio=self.cfg.crop_params.src_vy_ratio,
                    )
                    if self.is_animal:
                        ret_dct["lmk_crop"] = lmk
                    else:
                        lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
                        ret_dct["lmk_crop"] = lmk
                        ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / self.cfg.crop_params.src_dsize

                    # update a 256x256 version for network input
                    ret_dct["img_crop_256x256"] = cv2.resize(
                        ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA
                    )
                    crop_infos.append(ret_dct)

                src_infos = [[] for _ in range(len(crop_infos))]
                for i, crop_info in enumerate(crop_infos):
                    source_lmk = crop_info['lmk_crop']
                    img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
                    pitch, yaw, roll, t, exp, scale, kp = self.model_dict["motion_extractor"].predict(
                        img_crop_256x256)
                    x_s_info = {
                        "pitch": pitch,
                        "yaw": yaw,
                        "roll": roll,
                        "t": t,
                        "exp": exp,
                        "scale": scale,
                        "kp": kp
                    }
                    src_infos[i].append(copy.deepcopy(x_s_info))
                    x_c_s = kp
                    R_s = get_rotation_matrix(pitch, yaw, roll)
                    f_s = self.model_dict["app_feat_extractor"].predict(img_crop_256x256)
                    x_s = transform_keypoint(pitch, yaw, roll, t, exp, scale, kp)
                    src_infos[i].extend([source_lmk.copy(), R_s.copy(), f_s.copy(), x_s.copy(), x_c_s.copy()])
                    if not self.is_animal:
                        flag_lip_zero = self.cfg.infer_params.flag_normalize_lip  # not overwrite
                        if flag_lip_zero:
                            # let lip-open scalar to be 0 at first
                            c_d_lip_before_animation = [0.]
                            combined_lip_ratio_tensor_before_animation = self.calc_combined_lip_ratio(
                                c_d_lip_before_animation, source_lmk)
                            if combined_lip_ratio_tensor_before_animation[0][
                                0] < self.cfg.infer_params.lip_normalize_threshold:
                                flag_lip_zero = False
                                src_infos[i].append(None)
                                src_infos[i].append(flag_lip_zero)
                            else:
                                lip_delta_before_animation = self.model_dict['stitching_lip_retarget'].predict(
                                    concat_feat(x_s, combined_lip_ratio_tensor_before_animation))
                                src_infos[i].append(lip_delta_before_animation.copy())
                                src_infos[i].append(flag_lip_zero)
                        else:
                            src_infos[i].append(None)
                            src_infos[i].append(flag_lip_zero)
                    else:
                        src_infos[i].append(None)
                        src_infos[i].append(False)

                    ######## prepare for pasteback ########
                    if self.cfg.infer_params.flag_pasteback and self.cfg.infer_params.flag_do_crop and self.cfg.infer_params.flag_stitching:
                        mask_ori_float = prepare_paste_back(self.mask_crop, crop_info['M_c2o'],
                                                            dsize=(img_rgb.shape[1], img_rgb.shape[0]))
                        mask_ori_float = torch.from_numpy(mask_ori_float).to(self.device)
                        src_infos[i].append(mask_ori_float)
                    else:
                        src_infos[i].append(None)
                    M = torch.from_numpy(crop_info['M_c2o']).to(self.device)
                    src_infos[i].append(M)
                self.src_infos.append(src_infos[:])
            print(f"finish process source:{source_path} >>>>>>>>")
            return len(self.src_infos) > 0
        except Exception as e:
            traceback.print_exc()
            return False

    def retarget_eye(self, kp_source, eye_close_ratio):
        """

        kp_source: BxNx3

        eye_close_ratio: Bx3

        Return: Bx(3*num_kp+2)

        """
        feat_eye = concat_feat(kp_source, eye_close_ratio)
        delta = self.model_dict['stitching_eye_retarget'].predict(feat_eye)
        return delta

    def retarget_lip(self, kp_source, lip_close_ratio):
        """

        kp_source: BxNx3

        lip_close_ratio: Bx2

        """
        feat_lip = concat_feat(kp_source, lip_close_ratio)
        delta = self.model_dict['stitching_lip_retarget'].predict(feat_lip)
        return delta

    def stitching(self, kp_source, kp_driving):
        """ conduct the stitching

        kp_source: Bxnum_kpx3

        kp_driving: Bxnum_kpx3

        """

        bs, num_kp = kp_source.shape[:2]

        kp_driving_new = kp_driving.copy()

        delta = self.model_dict['stitching'].predict(concat_feat(kp_source, kp_driving_new))

        delta_exp = delta[..., :3 * num_kp].reshape(bs, num_kp, 3)  # 1x20x3
        delta_tx_ty = delta[..., 3 * num_kp:3 * num_kp + 2].reshape(bs, 1, 2)  # 1x1x2

        kp_driving_new += delta_exp
        kp_driving_new[..., :2] += delta_tx_ty

        return kp_driving_new

    def run(self, image, img_src, src_info, **kwargs):
        img_bgr = image
        img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
        I_p_pstbk = torch.from_numpy(img_src).to(self.device).float()
        realtime = kwargs.get("realtime", False)

        if self.cfg.infer_params.flag_crop_driving_video:
            if self.src_lmk_pre is None:
                src_face = self.model_dict["face_analysis"].predict(img_bgr)
                if len(src_face) == 0:
                    self.src_lmk_pre = None
                    return None, None, None
                lmk = src_face[0]
                lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
                self.src_lmk_pre = lmk.copy()
            else:
                lmk = self.model_dict["landmark"].predict(img_rgb, self.src_lmk_pre)
                self.src_lmk_pre = lmk.copy()

            ret_bbox = parse_bbox_from_landmark(
                lmk,
                scale=self.cfg.crop_params.dri_scale,
                vx_ratio_crop_video=self.cfg.crop_params.dri_vx_ratio,
                vy_ratio=self.cfg.crop_params.dri_vy_ratio,
            )["bbox"]
            global_bbox = [
                ret_bbox[0, 0],
                ret_bbox[0, 1],
                ret_bbox[2, 0],
                ret_bbox[2, 1],
            ]
            ret_dct = crop_image_by_bbox(
                img_rgb,
                global_bbox,
                lmk=lmk,
                dsize=kwargs.get("dsize", 512),
                flag_rot=False,
                borderValue=(0, 0, 0),
            )
            lmk_crop = ret_dct["lmk_crop"]
            img_crop = ret_dct["img_crop"]
            img_crop = cv2.resize(img_crop, (256, 256))
        else:
            if self.src_lmk_pre is None:
                src_face = self.model_dict["face_analysis"].predict(img_bgr)
                if len(src_face) == 0:
                    self.src_lmk_pre = None
                    return None, None, None
                lmk = src_face[0]
                lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
                self.src_lmk_pre = lmk.copy()
            else:
                lmk = self.model_dict["landmark"].predict(img_rgb, self.src_lmk_pre)
                self.src_lmk_pre = lmk.copy()
            lmk_crop = lmk.copy()
            img_crop = cv2.resize(img_rgb, (256, 256))

        input_eye_ratio = calc_eye_close_ratio(lmk_crop[None])
        input_lip_ratio = calc_lip_close_ratio(lmk_crop[None])
        pitch, yaw, roll, t, exp, scale, kp = self.model_dict["motion_extractor"].predict(img_crop)
        x_d_i_info = {
            "pitch": pitch,
            "yaw": yaw,
            "roll": roll,
            "t": t,
            "exp": exp,
            "scale": scale,
            "kp": kp
        }
        R_d_i = get_rotation_matrix(pitch, yaw, roll)

        if kwargs.get("first_frame", False) or self.R_d_0 is None:
            self.R_d_0 = R_d_i.copy()
            self.x_d_0_info = copy.deepcopy(x_d_i_info)
            # realtime smooth
            self.R_d_smooth = utils.OneEuroFilter(4, 1)
            self.exp_smooth = utils.OneEuroFilter(4, 1)
        R_d_0 = self.R_d_0.copy()
        x_d_0_info = copy.deepcopy(self.x_d_0_info)
        out_crop, out_org = None, None
        for j in range(len(src_info)):
            x_s_info, source_lmk, R_s, f_s, x_s, x_c_s, lip_delta_before_animation, flag_lip_zero, mask_ori_float, M = \
                src_info[j]
            if self.cfg.infer_params.flag_relative_motion:
                if self.is_source_video:
                    if self.cfg.infer_params.flag_video_editing_head_rotation:
                        R_new = (R_d_i @ np.transpose(R_d_0, (0, 2, 1))) @ R_s
                        R_new = self.R_d_smooth.process(R_new)
                    else:
                        R_new = R_s
                else:
                    R_new = (R_d_i @ np.transpose(R_d_0, (0, 2, 1))) @ R_s
                delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
                if self.is_source_video:
                    delta_new = self.exp_smooth.process(delta_new)
                scale_new = x_s_info['scale'] if self.is_source_video else x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
                t_new = x_s_info['t'] if self.is_source_video else x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
            else:
                if self.is_source_video:
                    if self.cfg.infer_params.flag_video_editing_head_rotation:
                        R_new = R_d_i
                        R_new = self.R_d_smooth.process(R_new)
                    else:
                        R_new = R_s
                else:
                    R_new = R_d_i
                delta_new = x_d_i_info['exp'].copy()
                if self.is_source_video:
                    delta_new = self.exp_smooth.process(delta_new)
                scale_new = x_s_info['scale'].copy()
                t_new = x_d_i_info['t'].copy()

            t_new[..., 2] = 0  # zero tz
            x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
            if not self.is_animal:
                # Algorithm 1:
                if not self.cfg.infer_params.flag_stitching and not self.cfg.infer_params.flag_eye_retargeting and not self.cfg.infer_params.flag_lip_retargeting:
                    # without stitching or retargeting
                    if flag_lip_zero:
                        x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
                    else:
                        pass
                elif self.cfg.infer_params.flag_stitching and not self.cfg.infer_params.flag_eye_retargeting and not self.cfg.infer_params.flag_lip_retargeting:
                    # with stitching and without retargeting
                    if flag_lip_zero:
                        x_d_i_new = self.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(
                            -1, x_s.shape[1], 3)
                    else:
                        x_d_i_new = self.stitching(x_s, x_d_i_new)
                else:
                    eyes_delta, lip_delta = None, None
                    if self.cfg.infer_params.flag_eye_retargeting:
                        c_d_eyes_i = input_eye_ratio
                        combined_eye_ratio_tensor = self.calc_combined_eye_ratio(c_d_eyes_i,
                                                                                 source_lmk)
                        # ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
                        eyes_delta = self.retarget_eye(x_s, combined_eye_ratio_tensor)
                    if self.cfg.infer_params.flag_lip_retargeting:
                        c_d_lip_i = input_lip_ratio
                        combined_lip_ratio_tensor = self.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
                        # ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
                        lip_delta = self.retarget_lip(x_s, combined_lip_ratio_tensor)

                    if self.cfg.infer_params.flag_relative_motion:  # use x_s
                        x_d_i_new = x_s + \
                                    (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
                                    (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
                    else:  # use x_d,i
                        x_d_i_new = x_d_i_new + \
                                    (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
                                    (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)

                    if self.cfg.infer_params.flag_stitching:
                        x_d_i_new = self.stitching(x_s, x_d_i_new)
            else:
                if self.cfg.infer_params.flag_stitching:
                    x_d_i_new = self.stitching(x_s, x_d_i_new)

            x_d_i_new = x_s + (x_d_i_new - x_s) * self.cfg.infer_params.driving_multiplier
            out_crop = self.model_dict["warping_spade"].predict(f_s, x_s, x_d_i_new)
            if not realtime and self.cfg.infer_params.flag_pasteback and self.cfg.infer_params.flag_do_crop and self.cfg.infer_params.flag_stitching:
                # TODO: pasteback is slow, considering optimize it using multi-threading or GPU
                # I_p_pstbk = paste_back(out_crop, crop_info['M_c2o'], I_p_pstbk, mask_ori_float)
                I_p_pstbk = paste_back_pytorch(out_crop, M, I_p_pstbk, mask_ori_float)

        return img_crop, out_crop.to(dtype=torch.uint8).cpu().numpy(), I_p_pstbk.to(dtype=torch.uint8).cpu().numpy()

    def __del__(self):
        self.clean_models()