Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,617 Bytes
570db9a 68d6ff9 570db9a c38041d 570db9a 68d6ff9 570db9a c38041d 570db9a c38041d 570db9a 68d6ff9 c38041d 570db9a c38041d 68d6ff9 570db9a c38041d 570db9a c38041d 570db9a c38041d 570db9a c38041d 570db9a c38041d 570db9a c38041d 570db9a c38041d 570db9a e5db566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch
import torch.nn.functional as F
from torch import Tensor
import spaces
import numpy as np
from PIL import Image
import json, os, random
import gradio as gr
import torchvision.transforms.functional as TF
from safetensors.torch import load_file # Import the load_file function from safetensors
from matplotlib import cm
from huggingface_hub import hf_hub_download
from typing import Tuple
from models import get_model
def resize_density_map(x: Tensor, size: Tuple[int, int]) -> Tensor:
x_sum = torch.sum(x, dim=(-1, -2))
x = F.interpolate(x, size=size, mode="bilinear")
scale_factor = torch.nan_to_num(torch.sum(x, dim=(-1, -2)) / x_sum, nan=0.0, posinf=0.0, neginf=0.0)
return x * scale_factor
def init_seeds(seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
alpha = 0.8
init_seeds(42)
# -----------------------------
# Define the model architecture
# -----------------------------
truncation = 4
reduction = 8
granularity = "fine"
anchor_points = "average"
input_size = 224
# Comment the lines below to test non-CLIP models.
prompt_type = "word"
num_vpt = 32
vpt_drop = 0.
deep_vpt = True
repo_id = "Yiming-M/CLIP-EBC"
model_configs = {
"CLIP_EBC_ViT_L_14": {
"model_name": "clip_vit_l_14",
"filename": "nwpu_weights/CLIP_EBC_ViT_L_14/model.safetensors",
},
"CLIP_EBC_ViT_B_16": {
"model_name": "clip_vit_b_16",
"filename": "nwpu_weights/CLIP_EBC_ViT_B_16/model.safetensors",
},
}
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = "cuda"
if truncation is None: # regression, no truncation.
bins, anchor_points = None, None
else:
with open(os.path.join("configs", f"reduction_{reduction}.json"), "r") as f:
config = json.load(f)[str(truncation)]["nwpu"]
bins = config["bins"][granularity]
anchor_points = config["anchor_points"][granularity]["average"] if anchor_points == "average" else config["anchor_points"][granularity]["middle"]
bins = [(float(b[0]), float(b[1])) for b in bins]
anchor_points = [float(p) for p in anchor_points]
# Use a global reference to store the model instance
loaded_model = None
def load_model(model_choice: str):
global loaded_model
config = model_configs[model_choice]
model_name = config["model_name"]
filename = config["filename"]
# Prepare bins and anchor_points if using classification
if truncation is None:
bins_, anchor_points_ = None, None
else:
with open(os.path.join("configs", f"reduction_{reduction}.json"), "r") as f:
config_json = json.load(f)[str(truncation)]["nwpu"]
bins_ = config_json["bins"][granularity]
anchor_points_ = config_json["anchor_points"][granularity]["average"] if anchor_points == "average" else config_json["anchor_points"][granularity]["middle"]
bins_ = [(float(b[0]), float(b[1])) for b in bins_]
anchor_points_ = [float(p) for p in anchor_points_]
# Build model
model = get_model(
backbone=model_name,
input_size=input_size,
reduction=reduction,
bins=bins_,
anchor_points=anchor_points_,
prompt_type=prompt_type,
num_vpt=num_vpt,
vpt_drop=vpt_drop,
deep_vpt=deep_vpt,
)
weights_path = hf_hub_download(repo_id, filename)
state_dict = load_file(weights_path)
new_state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
model.load_state_dict(new_state_dict)
model.eval()
loaded_model = model
# -----------------------------
# Preprocessing function
# -----------------------------
# Adjust the image transforms to match what your model expects.
def transform(image: Image.Image):
assert isinstance(image, Image.Image), "Input must be a PIL Image"
image_tensor = TF.to_tensor(image)
image_height, image_width = image_tensor.shape[-2:]
if image_height < input_size or image_width < input_size:
# Find the ratio to resize the image while maintaining the aspect ratio
ratio = max(input_size / image_height, input_size / image_width)
new_height = int(image_height * ratio) + 1
new_width = int(image_width * ratio) + 1
image_tensor = TF.resize(image_tensor, (new_height, new_width), interpolation=TF.InterpolationMode.BICUBIC, antialias=True)
image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
return image_tensor.unsqueeze(0) # Add batch dimension
# -----------------------------
# Inference function
# -----------------------------
@spaces.GPU(duration=120)
def predict(image: Image.Image, model_choice: str = "CLIP_EBC_ViT_B_16"):
"""
Given an input image, preprocess it, run the model to obtain a density map,
compute the total crowd count, and prepare the density map for display.
"""
global loaded_model
if loaded_model is None or model_configs[model_choice]["model_name"] not in loaded_model.__class__.__name__:
load_model(model_choice)
loaded_model.to(device)
# Preprocess the image
input_width, input_height = image.size
input_tensor = transform(image).to(device) # shape: (1, 3, H, W)
with torch.no_grad():
density_map = loaded_model(input_tensor) # expected shape: (1, 1, H, W)
total_count = density_map.sum().item()
resized_density_map = resize_density_map(density_map, (input_height, input_width)).cpu().squeeze().numpy()
# Normalize the density map for display purposes
eps = 1e-8
density_map_norm = (resized_density_map - resized_density_map.min()) / (resized_density_map.max() - resized_density_map.min() + eps)
# Apply a colormap (e.g., 'jet') to get an RGBA image
colormap = cm.get_cmap("jet")
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
density_map_color = (colormap(density_map_norm) * 255).astype(np.uint8)
density_map_color_img = Image.fromarray(density_map_color).convert("RGBA")
# Ensure the original image is in RGBA format.
image_rgba = image.convert("RGBA")
overlayed_image = Image.blend(image_rgba, density_map_color_img, alpha=alpha)
return image, overlayed_image, f"Predicted Count: {total_count:.2f}"
# -----------------------------
# Build Gradio Interface using Blocks for a two-column layout
# -----------------------------
with gr.Blocks() as demo:
gr.Markdown("# Crowd Counting by CLIP-EBC (Pre-trained on NWPU-Crowd)")
gr.Markdown("Upload an image or select an example below to see the predicted crowd density map and total count.")
with gr.Row():
with gr.Column():
model_choice = gr.Dropdown(
choices=list(model_configs.keys()),
value="CLIP_EBC_ViT_B_16",
label="Select Model"
)
input_img = gr.Image(label="Input Image", sources=["upload", "clipboard"], type="pil")
submit_btn = gr.Button("Predict")
with gr.Column():
output_img = gr.Image(label="Predicted Density Map", type="pil")
output_text = gr.Textbox(label="Total Count")
submit_btn.click(fn=predict, inputs=[input_img, model_choice], outputs=[input_img, output_img, output_text])
gr.Examples(
examples=[
["example1.jpg"],
["example2.jpg"],
["example3.jpg"],
["example4.jpg"],
["example5.jpg"],
],
inputs=input_img,
label="Try an example"
)
demo.launch() |