Spaces:
Runtime error
Runtime error
File size: 23,420 Bytes
7a919c0 575d321 7a919c0 575d321 7a919c0 575d321 7a919c0 575d321 7a919c0 73386d5 7a919c0 73386d5 7a919c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
# Copyright (c) OpenMMLab. All rights reserved.
"""LLM server proxy."""
import argparse
import json
import os
import random
import time
from datetime import datetime, timedelta
from multiprocessing import Process, Value
import asyncio # yyj
import pytoml
import requests
from aiohttp import web
from aiohttp.web_runner import AppRunner
from loguru import logger
from openai import OpenAI
from transformers import AutoModelForCausalLM, AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def check_gpu_max_memory_gb():
try:
import torch
device = torch.device('cuda')
return torch.cuda.get_device_properties(
device).total_memory / ( # noqa E501
1 << 30)
except Exception as e:
logger.error(str(e))
return -1
def build_messages(prompt, history, system: str = None):
messages = []
if system is not None and len(system) > 0:
messages.append({'role': 'system', 'content': system})
for item in history:
messages.append({'role': 'user', 'content': item[0]})
messages.append({'role': 'assistant', 'content': item[1]})
messages.append({'role': 'user', 'content': prompt})
return messages
def os_run(cmd: str):
ret = os.popen(cmd)
ret = ret.read().rstrip().lstrip()
return ret
class RPM:
def __init__(self, rpm: int = 30):
self.rpm = rpm
self.record = {'slot': self.get_minute_slot(), 'counter': 0}
def get_minute_slot(self):
current_time = time.time()
dt_object = datetime.fromtimestamp(current_time)
total_minutes_since_midnight = dt_object.hour * 60 + dt_object.minute
return total_minutes_since_midnight
def wait(self):
current = time.time()
dt_object = datetime.fromtimestamp(current)
minute_slot = self.get_minute_slot()
if self.record['slot'] == minute_slot:
# check RPM exceed
if self.record['counter'] >= self.rpm:
# wait until next minute
next_minute = dt_object.replace(
second=0, microsecond=0) + timedelta(minutes=1)
_next = next_minute.timestamp()
sleep_time = abs(_next - current)
time.sleep(sleep_time)
self.record = {'slot': self.get_minute_slot(), 'counter': 0}
else:
self.record = {'slot': self.get_minute_slot(), 'counter': 0}
self.record['counter'] += 1
logger.debug(self.record)
class InferenceWrapper:
"""A class to wrapper kinds of inference framework."""
def __init__(self, model_path: str):
"""Init model handler."""
if check_gpu_max_memory_gb() < 20:
logger.warning(
'GPU mem < 20GB, try Experience Version or set llm.server.local_llm_path="Qwen/Qwen-7B-Chat-Int8" in `config.ini`' # noqa E501
)
self.tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
if 'qwen1.5' in model_path.lower():
self.model = AutoModelForCausalLM.from_pretrained(
model_path, device_map='auto', trust_remote_code=True).eval()
elif 'qwen' in model_path.lower():
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map='auto',
trust_remote_code=True,
use_cache_quantization=True,
use_cache_kernel=True,
use_flash_attn=False).eval()
else:
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
device_map='auto',
torch_dtype='auto').eval()
def chat(self, prompt: str, history=[]):
"""Generate a response from local LLM.
Args:
prompt (str): The prompt for inference.
history (list): List of previous interactions.
Returns:
str: Generated response.
"""
output_text = ''
if type(self.model).__name__ == 'Qwen2ForCausalLM':
messages = build_messages(
prompt=prompt,
history=history,
system='You are a helpful assistant') # noqa E501
text = self.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
model_inputs = self.tokenizer([text],
return_tensors='pt').to('cuda')
generated_ids = self.model.generate(model_inputs.input_ids,
max_new_tokens=512,
top_k=1)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(
model_inputs.input_ids, generated_ids)
]
output_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True)[0]
else:
output_text, _ = self.model.chat(self.tokenizer,
prompt,
history,
top_k=1,
do_sample=False)
return output_text
class HybridLLMServer:
"""A class to handle server-side interactions with a hybrid language
learning model (LLM) service.
This class is responsible for initializing the local and remote LLMs,
generating responses from these models as per the provided configuration,
and handling retries in case of failures.
"""
def __init__(self,
llm_config: dict,
device: str = 'cuda',
retry=2,
config_path = 'config.ini') -> None:
"""Initialize the HybridLLMServer with the given configuration, device,
and number of retries."""
self.device = device
self.retry = retry
self.llm_config = llm_config
self.config_path = config_path
self.server_config = llm_config['server']
# self.enable_remote = llm_config['enable_remote']
# self.enable_local = llm_config['enable_local']
self.local_max_length = self.server_config['local_llm_max_text_length']
self.remote_max_length = self.server_config[
'remote_llm_max_text_length']
self.remote_type = self.server_config['remote_type']
model_path = self.server_config['local_llm_path']
_rpm = 500
if 'rpm' in self.server_config:
_rpm = self.server_config['rpm']
self.rpm = RPM(_rpm)
self.token = ('', 0)
self.inference = InferenceWrapper(model_path)
# if self.enable_local:
# self.inference = InferenceWrapper(model_path)
# else:
# logger.warning('local LLM disabled.')
def reload_config(self):
with open (self.config_path,'r', encoding='utf8') as f:
self.llm_config = pytoml.load(f)['llm']
self.server_config = self.llm_config['server']
self.remote_type = self.server_config['remote_type']
self.remote_model = self.server_config['remote_llm_model']
self.remote_max_length = self.server_config['remote_llm_max_text_length']
self.api_key = self.server_config['remote_api_key']
self.base_url = self.server_config['remote_base_url']
def call_puyu(self, prompt, history):
self.reload_config()
url = 'https://puyu.openxlab.org.cn/puyu/api/v1/chat/completion'
now = time.time()
if int(now - self.token[1]) >= 1800:
logger.debug('refresh token {}'.format(time.time()))
self.token = (os_run('openxlab token'), time.time())
header = {
'Content-Type': 'application/json',
'Authorization': self.token[0]
}
logger.info('prompt length {}'.format(len(prompt)))
history = history[-4:]
messages = []
for item in history:
messages.append({'role': 'user', 'content': item[0]})
messages.append({'role': 'assistant', 'content': item[1]})
messages.append({'role': 'user', 'content': prompt})
data = {
'model': 'internlm2-20b-latest',
'messages': messages,
'n': 1,
'disable_report': False,
'top_p': 0.9,
'temperature': 0.8,
'request_output_len': 2048
}
output_text = ''
self.rpm.wait()
life = 0
while life < self.retry:
try:
res_json = requests.post(url,
headers=header,
data=json.dumps(data),
timeout=120).json()
logger.debug(res_json)
# fix token
if 'msgCode' in res_json and res_json['msgCode'] == 'A0202':
# token error retry
logger.error('token error, try refresh')
self.token = (os_run('openxlab token'), time.time())
header = {
'Content-Type': 'application/json',
'Authorization': self.token[0]
}
res_json = requests.post(url,
headers=header,
data=json.dumps(data),
timeout=120).json()
logger.debug(res_json)
res_data = res_json['data']
if len(res_data) < 1:
logger.error('debug:')
logger.error(res_json)
return output_text
output_text = res_data['choices'][0]['text']
logger.info(res_json)
if '仩嗨亾笁潪能實験厔' in output_text:
raise Exception('internlm model waterprint !!!')
return output_text
except Exception as e:
with open('badcase{}.txt'.format(life), 'w') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
logger.error(str(e))
self.token = (os_run('openxlab token'), time.time())
header = {
'Content-Type': 'application/json',
'Authorization': self.token[0]
}
life += 1
return output_text
def call_kimi(self, prompt, history):
"""Generate a response from Kimi (a remote LLM).
Args:
prompt (str): The prompt to send to Kimi.
history (list): List of previous interactions.
Returns:
str: Generated response from Kimi.
"""
self.reload_config()
client = OpenAI(
api_key=self.server_config['remote_api_key'],
base_url='https://api.moonshot.cn/v1',
)
SYSTEM = '你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一些涉及恐怖主义,种族歧视,黄色暴力,政治宗教等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。' # noqa E501
messages = build_messages(prompt=prompt,
history=history,
system=SYSTEM)
life = 0
while life < self.retry:
try:
logger.debug('remote api sending: {}'.format(messages))
completion = client.chat.completions.create(
model=self.server_config['remote_llm_model'],
messages=messages,
temperature=0.0,
)
return completion.choices[0].message.content
except Exception as e:
logger.error(str(e))
# retry
life += 1
randval = random.randint(1, int(pow(2, life)))
time.sleep(randval)
return ''
def call_gpt(self,
prompt,
history,
base_url: str = None,
system: str = None):
"""Generate a response from openai API.
Args:
prompt (str): The prompt to send to openai API.
history (list): List of previous interactions.
Returns:
str: Generated response from RPC.
"""
self.reload_config()
if base_url is not None:
client = OpenAI(api_key=self.server_config['remote_api_key'],
base_url=base_url)
elif self.base_url != '':
client = OpenAI(api_key=self.server_config['remote_api_key'],
base_url=self.base_url)
else:
client = OpenAI(api_key=self.server_config['remote_api_key'])
messages = build_messages(prompt=prompt,
history=history,
system=system)
life = 0
while life < self.retry:
try:
logger.debug('remote api sending: {}'.format(messages))
completion = client.chat.completions.create(
model=self.server_config['remote_llm_model'],
messages=messages,
temperature=0.0,
)
return completion.choices[0].message.content
except Exception as e:
logger.error(str(e))
# retry
life += 1
randval = random.randint(1, int(pow(3, life)))
time.sleep(randval)
return ''
def call_deepseek(self, prompt, history):
"""Generate a response from deepseek (a remote LLM).
Args:
prompt (str): The prompt to send.
history (list): List of previous interactions.
Returns:
str: Generated response.
"""
self.reload_config()
client = OpenAI(
api_key=self.server_config['remote_api_key'],
base_url='https://api.deepseek.com/v1',
)
messages = build_messages(
prompt=prompt,
history=history,
system='You are a helpful assistant') # noqa E501
life = 0
while life < self.retry:
try:
logger.debug('remote api sending: {}'.format(messages))
completion = client.chat.completions.create(
model=self.server_config['remote_llm_model'],
messages=messages,
temperature=0.1,
)
return completion.choices[0].message.content
except Exception as e:
logger.error(str(e))
# retry
life += 1
randval = random.randint(1, int(pow(2, life)))
time.sleep(randval)
return ''
def call_zhipuai(self, prompt, history):
"""Generate a response from zhipuai (a remote LLM).
Args:
prompt (str): The prompt to send.
history (list): List of previous interactions.
Returns:
str: Generated response.
"""
self.reload_config()
try:
from zhipuai import ZhipuAI
client = ZhipuAI(api_key=self.server_config['remote_api_key'])
except Exception as e:
logger.error(str(e))
logger.error('please `pip install zhipuai` and check API_KEY')
return ''
messages = build_messages(
prompt=prompt,
history=history,
system='You are a helpful assistant') # noqa E501
life = 0
while life < self.retry:
try:
logger.debug('remote api sending: {}'.format(messages))
completion = client.chat.completions.create(
model=self.server_config['remote_llm_model'],
messages=messages,
temperature=0.1,
)
return completion.choices[0].message.content
except Exception as e:
logger.error(str(e))
# retry
life += 1
randval = random.randint(1, int(pow(2, life)))
time.sleep(randval)
return ''
def call_alles_apin(self, prompt: str, history: list):
self.reload_config()
self.rpm.wait()
url = 'https://openxlab.org.cn/gw/alles-apin-hub/v1/openai/v2/text/chat'
headers = {
'content-type': 'application/json',
'alles-apin-token': self.server_config['remote_api_key']
}
messages = build_messages(prompt=prompt, history=history)
payload = {'model': 'gpt-4-1106-preview', 'messages': messages}
response = requests.post(url,
headers=headers,
data=json.dumps(payload))
text = ''
resp_json = response.json()
if resp_json['msgCode'] == '10000':
data = resp_json['data']
if len(data['choices']) > 0:
text = data['choices'][0]['message']['content']
return text
def generate_response(self, prompt, history=[], backend='local'):
"""Generate a response from the appropriate LLM based on the
configuration.
Args:
prompt (str): The prompt to send to the LLM.
history (list, optional): List of previous interactions. Defaults to []. # noqa E501
remote (bool, optional): Flag to determine whether to use a remote server. Defaults to False. # noqa E501
Returns:
str: Generated response from the LLM.
"""
output_text = ''
time_tokenizer = time.time()
if backend == 'remote':
# not specify remote LLM type, use config
backend = self.server_config['remote_type']
if backend == 'local':
prompt = prompt[0:self.local_max_length]
"""# Caution: For the results of this software to be reliable and verifiable, # noqa E501
it's essential to ensure reproducibility. Thus `GenerationMode.GREEDY_SEARCH` # noqa E501
must enabled."""
output_text = self.inference.chat(prompt, history)
else:
prompt = prompt[0:self.remote_max_length]
if backend == 'kimi':
output_text = self.call_kimi(prompt=prompt, history=history)
elif backend == 'deepseek':
output_text = self.call_deepseek(prompt=prompt,
history=history)
elif backend == 'zhipuai':
output_text = self.call_zhipuai(prompt=prompt, history=history)
elif backend == 'xi-api' or backend == 'gpt':
base_url = None
system = None
if backend == 'xi-api':
base_url = 'https://api.xi-ai.cn/v1'
system = 'You are a helpful assistant.'
output_text = self.call_gpt(prompt=prompt,
history=history,
base_url=base_url,
system=system)
elif backend == 'puyu':
output_text = self.call_puyu(prompt=prompt, history=history)
elif backend == 'alles-apin':
output_text = self.call_alles_apin(prompt=prompt,
history=history)
else:
logger.error('unknow backend {}'.format(backend))
logger.info((prompt, output_text))
time_finish = time.time()
logger.debug('Q:{} A:{} \t\t remote {} timecost {} '.format(
prompt[-100:-1], output_text, backend,
time_finish - time_tokenizer))
return output_text
def parse_args():
"""Parse command-line arguments."""
parser = argparse.ArgumentParser(description='Hybrid LLM Server.')
parser.add_argument(
'--config_path',
default='config.ini',
help= # noqa E251
'Hybrid LLM Server configuration path. Default value is config.ini' # noqa E501
)
parser.add_argument('--unittest',
action='store_true',
default=False,
help='Test with samples.')
args = parser.parse_args()
return args
def llm_serve(config_path: str, server_ready: Value):
"""Start the LLM server.
Args:
config_path (str): Path to the configuration file.
server_ready (multiprocessing.Value): Shared variable to indicate when the server is ready. # noqa E501
"""
# logger.add('logs/server.log', rotation="4MB")
with open(config_path,'r', encoding='utf8') as f:
llm_config = pytoml.load(f)['llm']
bind_port = int(llm_config['server']['local_llm_bind_port'])
try:
server = HybridLLMServer(llm_config=llm_config,config_path=config_path)
server_ready.value = 1
except Exception as e:
server_ready.value = -1
raise (e)
async def inference(request):
"""Call local llm inference."""
input_json = await request.json()
# logger.debug(input_json)
prompt = input_json['prompt']
history = input_json['history']
backend = input_json['backend']
# logger.debug(f'history: {history}')
text = server.generate_response(prompt=prompt,
history=history,
backend=backend)
return web.json_response({'text': text})
app = web.Application()
app.add_routes([web.post('/inference', inference)])
web.run_app(app, host='0.0.0.0', port=bind_port)
def test_rpm():
rpm = RPM(30)
for i in range(40):
rpm.wait()
print(i)
time.sleep(10)
for i in range(40):
rpm.wait()
print(i)
def main():
"""Function to start the server without running a separate process."""
args = parse_args()
server_ready = Value('i', 0)
if not args.unittest:
llm_serve(args.config_path, server_ready)
else:
server_process = Process(target=llm_serve,
args=(args.config_path, server_ready))
server_process.daemon = True
server_process.start()
from .llm_client import ChatClient
client = ChatClient(config_path=args.config_path)
while server_ready.value == 0:
logger.info('waiting for server to be ready..')
time.sleep(2)
queries = ['今天天气如何?']
for query in queries:
print(
client.generate_response(prompt=query,
history=[],
backend='local'))
if __name__ == '__main__':
main()
# test_rpm()
|