|
|
|
__author__ = 'https://github.com/ZFTurbo/' |
|
|
|
if __name__ == '__main__': |
|
import os |
|
|
|
gpu_use = "0" |
|
print('GPU use: {}'.format(gpu_use)) |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use) |
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import os |
|
import argparse |
|
import soundfile as sf |
|
|
|
from demucs.states import load_model |
|
from demucs import pretrained |
|
from demucs.apply import apply_model |
|
import onnxruntime as ort |
|
from time import time |
|
import librosa |
|
import hashlib |
|
|
|
|
|
__VERSION__ = '1.0.1' |
|
|
|
|
|
class Conv_TDF_net_trim_model(nn.Module): |
|
def __init__(self, device, target_name, L, n_fft, hop=1024): |
|
|
|
super(Conv_TDF_net_trim_model, self).__init__() |
|
|
|
self.dim_c = 4 |
|
self.dim_f, self.dim_t = 3072, 256 |
|
self.n_fft = n_fft |
|
self.hop = hop |
|
self.n_bins = self.n_fft // 2 + 1 |
|
self.chunk_size = hop * (self.dim_t - 1) |
|
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device) |
|
self.target_name = target_name |
|
|
|
out_c = self.dim_c * 4 if target_name == '*' else self.dim_c |
|
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device) |
|
|
|
self.n = L // 2 |
|
|
|
def stft(self, x): |
|
x = x.reshape([-1, self.chunk_size]) |
|
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True) |
|
x = torch.view_as_real(x) |
|
x = x.permute([0, 3, 1, 2]) |
|
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, self.dim_c, self.n_bins, self.dim_t]) |
|
return x[:, :, :self.dim_f] |
|
|
|
def istft(self, x, freq_pad=None): |
|
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad |
|
x = torch.cat([x, freq_pad], -2) |
|
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t]) |
|
x = x.permute([0, 2, 3, 1]) |
|
x = x.contiguous() |
|
x = torch.view_as_complex(x) |
|
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True) |
|
return x.reshape([-1, 2, self.chunk_size]) |
|
|
|
def forward(self, x): |
|
x = self.first_conv(x) |
|
x = x.transpose(-1, -2) |
|
|
|
ds_outputs = [] |
|
for i in range(self.n): |
|
x = self.ds_dense[i](x) |
|
ds_outputs.append(x) |
|
x = self.ds[i](x) |
|
|
|
x = self.mid_dense(x) |
|
for i in range(self.n): |
|
x = self.us[i](x) |
|
x *= ds_outputs[-i - 1] |
|
x = self.us_dense[i](x) |
|
|
|
x = x.transpose(-1, -2) |
|
x = self.final_conv(x) |
|
return x |
|
|
|
|
|
def get_models(name, device, load=True, vocals_model_type=0): |
|
if vocals_model_type == 2: |
|
model_vocals = Conv_TDF_net_trim_model( |
|
device=device, |
|
target_name='vocals', |
|
L=11, |
|
n_fft=7680 |
|
) |
|
elif vocals_model_type == 3: |
|
model_vocals = Conv_TDF_net_trim_model( |
|
device=device, |
|
target_name='vocals', |
|
L=11, |
|
n_fft=6144 |
|
) |
|
|
|
return [model_vocals] |
|
|
|
|
|
def demix_base(mix, device, models, infer_session): |
|
start_time = time() |
|
sources = [] |
|
n_sample = mix.shape[1] |
|
for model in models: |
|
trim = model.n_fft // 2 |
|
gen_size = model.chunk_size - 2 * trim |
|
pad = gen_size - n_sample % gen_size |
|
mix_p = np.concatenate( |
|
( |
|
np.zeros((2, trim)), |
|
mix, |
|
np.zeros((2, pad)), |
|
np.zeros((2, trim)) |
|
), 1 |
|
) |
|
|
|
mix_waves = [] |
|
i = 0 |
|
while i < n_sample + pad: |
|
waves = np.array(mix_p[:, i:i + model.chunk_size]) |
|
mix_waves.append(waves) |
|
i += gen_size |
|
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(device) |
|
|
|
with torch.no_grad(): |
|
_ort = infer_session |
|
stft_res = model.stft(mix_waves) |
|
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0] |
|
ten = torch.tensor(res) |
|
tar_waves = model.istft(ten.to(device)) |
|
tar_waves = tar_waves.cpu() |
|
tar_signal = tar_waves[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).numpy()[:, :-pad] |
|
|
|
sources.append(tar_signal) |
|
|
|
return np.array(sources) |
|
|
|
|
|
def demix_full(mix, device, chunk_size, models, infer_session, overlap=0.75): |
|
start_time = time() |
|
|
|
step = int(chunk_size * (1 - overlap)) |
|
|
|
result = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32) |
|
divider = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32) |
|
|
|
total = 0 |
|
for i in range(0, mix.shape[-1], step): |
|
total += 1 |
|
|
|
start = i |
|
end = min(i + chunk_size, mix.shape[-1]) |
|
|
|
mix_part = mix[:, start:end] |
|
sources = demix_base(mix_part, device, models, infer_session) |
|
|
|
result[..., start:end] += sources |
|
divider[..., start:end] += 1 |
|
sources = result / divider |
|
|
|
return sources |
|
|
|
|
|
class EnsembleDemucsMDXMusicSeparationModel: |
|
""" |
|
Doesn't do any separation just passes the input back as output |
|
""" |
|
def __init__(self, options): |
|
""" |
|
options - user options |
|
""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = 'cuda:0' |
|
else: |
|
device = 'cpu' |
|
if 'cpu' in options: |
|
if options['cpu']: |
|
device = 'cpu' |
|
print('Use device: {}'.format(device)) |
|
self.single_onnx = False |
|
if 'single_onnx' in options: |
|
if options['single_onnx']: |
|
self.single_onnx = True |
|
print('Use single vocal ONNX') |
|
|
|
self.kim_model_1 = False |
|
if 'use_kim_model_1' in options: |
|
if options['use_kim_model_1']: |
|
self.kim_model_1 = True |
|
if self.kim_model_1: |
|
print('Use Kim model 1') |
|
else: |
|
print('Use Kim model 2') |
|
|
|
self.overlap_large = float(options['overlap_large']) |
|
self.overlap_small = float(options['overlap_small']) |
|
if self.overlap_large > 0.99: |
|
self.overlap_large = 0.99 |
|
if self.overlap_large < 0.0: |
|
self.overlap_large = 0.0 |
|
if self.overlap_small > 0.99: |
|
self.overlap_small = 0.99 |
|
if self.overlap_small < 0.0: |
|
self.overlap_small = 0.0 |
|
|
|
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/' |
|
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th' |
|
model_path = model_folder + '04573f0d-f3cf25b2.th' |
|
if not os.path.isfile(model_path): |
|
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th') |
|
model_vocals = load_model(model_path) |
|
model_vocals.to(device) |
|
self.model_vocals_only = model_vocals |
|
|
|
self.models = [] |
|
self.weights_vocals = np.array([10, 1, 8, 9]) |
|
self.weights_bass = np.array([19, 4, 5, 8]) |
|
self.weights_drums = np.array([18, 2, 4, 9]) |
|
self.weights_other = np.array([14, 2, 5, 10]) |
|
|
|
model1 = pretrained.get_model('htdemucs_ft') |
|
model1.to(device) |
|
self.models.append(model1) |
|
|
|
model2 = pretrained.get_model('htdemucs') |
|
model2.to(device) |
|
self.models.append(model2) |
|
|
|
model3 = pretrained.get_model('htdemucs_6s') |
|
model3.to(device) |
|
self.models.append(model3) |
|
|
|
model4 = pretrained.get_model('hdemucs_mmi') |
|
model4.to(device) |
|
self.models.append(model4) |
|
|
|
if 0: |
|
for model in self.models: |
|
print(model.sources) |
|
''' |
|
['drums', 'bass', 'other', 'vocals'] |
|
['drums', 'bass', 'other', 'vocals'] |
|
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano'] |
|
['drums', 'bass', 'other', 'vocals'] |
|
''' |
|
|
|
if device == 'cpu': |
|
chunk_size = 200000000 |
|
providers = ["CPUExecutionProvider"] |
|
else: |
|
chunk_size = 1000000 |
|
providers = ["CUDAExecutionProvider"] |
|
if 'chunk_size' in options: |
|
chunk_size = int(options['chunk_size']) |
|
|
|
|
|
self.chunk_size = chunk_size |
|
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2) |
|
if self.kim_model_1: |
|
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx' |
|
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx' |
|
else: |
|
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx' |
|
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx' |
|
if not os.path.isfile(model_path_onnx1): |
|
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1) |
|
print('Model path: {}'.format(model_path_onnx1)) |
|
print('Device: {} Chunk size: {}'.format(device, chunk_size)) |
|
self.infer_session1 = ort.InferenceSession( |
|
model_path_onnx1, |
|
providers=providers, |
|
provider_options=[{"device_id": 0}], |
|
) |
|
|
|
if self.single_onnx is False: |
|
|
|
self.chunk_size = chunk_size |
|
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2) |
|
root_path = os.path.dirname(os.path.realpath(__file__)) + '/' |
|
model_path_onnx2 = model_folder + 'Kim_Inst.onnx' |
|
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx' |
|
if not os.path.isfile(model_path_onnx2): |
|
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2) |
|
print('Model path: {}'.format(model_path_onnx2)) |
|
print('Device: {} Chunk size: {}'.format(device, chunk_size)) |
|
self.infer_session2 = ort.InferenceSession( |
|
model_path_onnx2, |
|
providers=providers, |
|
provider_options=[{"device_id": 0}], |
|
) |
|
|
|
self.device = device |
|
pass |
|
|
|
@property |
|
def instruments(self): |
|
""" DO NOT CHANGE """ |
|
return ['bass', 'drums', 'other', 'vocals'] |
|
|
|
def raise_aicrowd_error(self, msg): |
|
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """ |
|
raise NameError(msg) |
|
|
|
def separate_music_file( |
|
self, |
|
mixed_sound_array, |
|
sample_rate, |
|
update_percent_func=None, |
|
current_file_number=0, |
|
total_files=0, |
|
only_vocals=False, |
|
): |
|
""" |
|
Implements the sound separation for a single sound file |
|
Inputs: Outputs from soundfile.read('mixture.wav') |
|
mixed_sound_array |
|
sample_rate |
|
|
|
Outputs: |
|
separated_music_arrays: Dictionary numpy array of each separated instrument |
|
output_sample_rates: Dictionary of sample rates separated sequence |
|
""" |
|
|
|
|
|
|
|
separated_music_arrays = {} |
|
output_sample_rates = {} |
|
|
|
audio = np.expand_dims(mixed_sound_array.T, axis=0) |
|
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) |
|
|
|
overlap_large = self.overlap_large |
|
overlap_small = self.overlap_small |
|
|
|
|
|
model = self.model_vocals_only |
|
shifts = 1 |
|
overlap = overlap_large |
|
vocals_demucs = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.10) / total_files |
|
update_percent_func(int(val)) |
|
|
|
vocals_demucs += 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.20) / total_files |
|
update_percent_func(int(val)) |
|
|
|
overlap = overlap_large |
|
sources1 = demix_full( |
|
mixed_sound_array.T, |
|
self.device, |
|
self.chunk_size, |
|
self.mdx_models1, |
|
self.infer_session1, |
|
overlap=overlap |
|
)[0] |
|
|
|
vocals_mdxb1 = sources1 |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.30) / total_files |
|
update_percent_func(int(val)) |
|
|
|
if self.single_onnx is False: |
|
sources2 = -demix_full( |
|
-mixed_sound_array.T, |
|
self.device, |
|
self.chunk_size, |
|
self.mdx_models2, |
|
self.infer_session2, |
|
overlap=overlap |
|
)[0] |
|
|
|
|
|
instrum_mdxb2 = sources2 |
|
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2 |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.40) / total_files |
|
update_percent_func(int(val)) |
|
|
|
|
|
if self.single_onnx is False: |
|
weights = np.array([12, 8, 3]) |
|
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum() |
|
else: |
|
weights = np.array([6, 1]) |
|
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum() |
|
|
|
|
|
separated_music_arrays['vocals'] = vocals |
|
output_sample_rates['vocals'] = sample_rate |
|
|
|
if not only_vocals: |
|
|
|
instrum = mixed_sound_array - vocals |
|
|
|
audio = np.expand_dims(instrum.T, axis=0) |
|
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) |
|
|
|
all_outs = [] |
|
for i, model in enumerate(self.models): |
|
if i == 0: |
|
overlap = overlap_small |
|
elif i > 0: |
|
overlap = overlap_large |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files |
|
update_percent_func(int(val)) |
|
|
|
if i == 2: |
|
|
|
out[2] = out[2] + out[4] + out[5] |
|
out = out[:4] |
|
|
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
|
|
all_outs.append(out) |
|
out = np.array(all_outs).sum(axis=0) |
|
out[0] = out[0] / self.weights_drums.sum() |
|
out[1] = out[1] / self.weights_bass.sum() |
|
out[2] = out[2] / self.weights_other.sum() |
|
out[3] = out[3] / self.weights_vocals.sum() |
|
|
|
|
|
res = mixed_sound_array - vocals - out[0].T - out[1].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0 |
|
output_sample_rates['other'] = sample_rate |
|
|
|
|
|
res = mixed_sound_array - vocals - out[1].T - out[2].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0 |
|
output_sample_rates['drums'] = sample_rate |
|
|
|
|
|
res = mixed_sound_array - vocals - out[0].T - out[2].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0 |
|
output_sample_rates['bass'] = sample_rate |
|
|
|
bass = separated_music_arrays['bass'] |
|
drums = separated_music_arrays['drums'] |
|
other = separated_music_arrays['other'] |
|
|
|
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums |
|
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other |
|
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.95) / total_files |
|
update_percent_func(int(val)) |
|
|
|
return separated_music_arrays, output_sample_rates |
|
|
|
|
|
class EnsembleDemucsMDXMusicSeparationModelLowGPU: |
|
""" |
|
Doesn't do any separation just passes the input back as output |
|
""" |
|
|
|
def __init__(self, options): |
|
""" |
|
options - user options |
|
""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = 'cuda:0' |
|
else: |
|
device = 'cpu' |
|
if 'cpu' in options: |
|
if options['cpu']: |
|
device = 'cpu' |
|
print('Use device: {}'.format(device)) |
|
self.single_onnx = False |
|
if 'single_onnx' in options: |
|
if options['single_onnx']: |
|
self.single_onnx = True |
|
print('Use single vocal ONNX') |
|
|
|
self.kim_model_1 = False |
|
if 'use_kim_model_1' in options: |
|
if options['use_kim_model_1']: |
|
self.kim_model_1 = True |
|
if self.kim_model_1: |
|
print('Use Kim model 1') |
|
else: |
|
print('Use Kim model 2') |
|
|
|
self.overlap_large = float(options['overlap_large']) |
|
self.overlap_small = float(options['overlap_small']) |
|
if self.overlap_large > 0.99: |
|
self.overlap_large = 0.99 |
|
if self.overlap_large < 0.0: |
|
self.overlap_large = 0.0 |
|
if self.overlap_small > 0.99: |
|
self.overlap_small = 0.99 |
|
if self.overlap_small < 0.0: |
|
self.overlap_small = 0.0 |
|
|
|
self.weights_vocals = np.array([10, 1, 8, 9]) |
|
self.weights_bass = np.array([19, 4, 5, 8]) |
|
self.weights_drums = np.array([18, 2, 4, 9]) |
|
self.weights_other = np.array([14, 2, 5, 10]) |
|
|
|
if device == 'cpu': |
|
chunk_size = 200000000 |
|
self.providers = ["CPUExecutionProvider"] |
|
else: |
|
chunk_size = 1000000 |
|
self.providers = ["CUDAExecutionProvider"] |
|
if 'chunk_size' in options: |
|
chunk_size = int(options['chunk_size']) |
|
self.chunk_size = chunk_size |
|
self.device = device |
|
pass |
|
|
|
@property |
|
def instruments(self): |
|
""" DO NOT CHANGE """ |
|
return ['bass', 'drums', 'other', 'vocals'] |
|
|
|
def raise_aicrowd_error(self, msg): |
|
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """ |
|
raise NameError(msg) |
|
|
|
def separate_music_file( |
|
self, |
|
mixed_sound_array, |
|
sample_rate, |
|
update_percent_func=None, |
|
current_file_number=0, |
|
total_files=0, |
|
only_vocals=False |
|
): |
|
""" |
|
Implements the sound separation for a single sound file |
|
Inputs: Outputs from soundfile.read('mixture.wav') |
|
mixed_sound_array |
|
sample_rate |
|
|
|
Outputs: |
|
separated_music_arrays: Dictionary numpy array of each separated instrument |
|
output_sample_rates: Dictionary of sample rates separated sequence |
|
""" |
|
|
|
|
|
|
|
separated_music_arrays = {} |
|
output_sample_rates = {} |
|
|
|
audio = np.expand_dims(mixed_sound_array.T, axis=0) |
|
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) |
|
|
|
overlap_large = self.overlap_large |
|
overlap_small = self.overlap_small |
|
|
|
|
|
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/' |
|
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th' |
|
model_path = model_folder + '04573f0d-f3cf25b2.th' |
|
if not os.path.isfile(model_path): |
|
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th') |
|
model_vocals = load_model(model_path) |
|
model_vocals.to(self.device) |
|
shifts = 1 |
|
overlap = overlap_large |
|
vocals_demucs = 0.5 * apply_model(model_vocals, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.10) / total_files |
|
update_percent_func(int(val)) |
|
|
|
vocals_demucs += 0.5 * -apply_model(model_vocals, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() |
|
model_vocals = model_vocals.cpu() |
|
del model_vocals |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.20) / total_files |
|
update_percent_func(int(val)) |
|
|
|
|
|
mdx_models1 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2) |
|
if self.kim_model_1: |
|
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx' |
|
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx' |
|
else: |
|
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx' |
|
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx' |
|
if not os.path.isfile(model_path_onnx1): |
|
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1) |
|
print('Model path: {}'.format(model_path_onnx1)) |
|
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size)) |
|
infer_session1 = ort.InferenceSession( |
|
model_path_onnx1, |
|
providers=self.providers, |
|
provider_options=[{"device_id": 0}], |
|
) |
|
overlap = overlap_large |
|
sources1 = demix_full( |
|
mixed_sound_array.T, |
|
self.device, |
|
self.chunk_size, |
|
mdx_models1, |
|
infer_session1, |
|
overlap=overlap |
|
)[0] |
|
vocals_mdxb1 = sources1 |
|
del infer_session1 |
|
del mdx_models1 |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.30) / total_files |
|
update_percent_func(int(val)) |
|
|
|
if self.single_onnx is False: |
|
|
|
mdx_models2 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2) |
|
root_path = os.path.dirname(os.path.realpath(__file__)) + '/' |
|
model_path_onnx2 = model_folder + 'Kim_Inst.onnx' |
|
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx' |
|
if not os.path.isfile(model_path_onnx2): |
|
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2) |
|
print('Model path: {}'.format(model_path_onnx2)) |
|
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size)) |
|
infer_session2 = ort.InferenceSession( |
|
model_path_onnx2, |
|
providers=self.providers, |
|
provider_options=[{"device_id": 0}], |
|
) |
|
|
|
overlap = overlap_large |
|
sources2 = -demix_full( |
|
-mixed_sound_array.T, |
|
self.device, |
|
self.chunk_size, |
|
mdx_models2, |
|
infer_session2, |
|
overlap=overlap |
|
)[0] |
|
|
|
|
|
instrum_mdxb2 = sources2 |
|
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2 |
|
del infer_session2 |
|
del mdx_models2 |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.40) / total_files |
|
update_percent_func(int(val)) |
|
|
|
|
|
if self.single_onnx is False: |
|
weights = np.array([12, 8, 3]) |
|
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum() |
|
else: |
|
weights = np.array([6, 1]) |
|
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum() |
|
|
|
|
|
instrum = mixed_sound_array - vocals |
|
|
|
audio = np.expand_dims(instrum.T, axis=0) |
|
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) |
|
|
|
all_outs = [] |
|
|
|
i = 0 |
|
overlap = overlap_small |
|
model = pretrained.get_model('htdemucs_ft') |
|
model.to(self.device) |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files |
|
update_percent_func(int(val)) |
|
|
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
|
|
i = 1 |
|
overlap = overlap_large |
|
model = pretrained.get_model('htdemucs') |
|
model.to(self.device) |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files |
|
update_percent_func(int(val)) |
|
|
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
|
|
i = 2 |
|
overlap = overlap_large |
|
model = pretrained.get_model('htdemucs_6s') |
|
model.to(self.device) |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files |
|
update_percent_func(int(val)) |
|
|
|
|
|
out[2] = out[2] + out[4] + out[5] |
|
out = out[:4] |
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
|
|
i = 3 |
|
model = pretrained.get_model('hdemucs_mmi') |
|
model.to(self.device) |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files |
|
update_percent_func(int(val)) |
|
|
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
|
|
out = np.array(all_outs).sum(axis=0) |
|
out[0] = out[0] / self.weights_drums.sum() |
|
out[1] = out[1] / self.weights_bass.sum() |
|
out[2] = out[2] / self.weights_other.sum() |
|
out[3] = out[3] / self.weights_vocals.sum() |
|
|
|
|
|
separated_music_arrays['vocals'] = vocals |
|
output_sample_rates['vocals'] = sample_rate |
|
|
|
|
|
res = mixed_sound_array - vocals - out[0].T - out[1].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0 |
|
output_sample_rates['other'] = sample_rate |
|
|
|
|
|
res = mixed_sound_array - vocals - out[1].T - out[2].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0 |
|
output_sample_rates['drums'] = sample_rate |
|
|
|
|
|
res = mixed_sound_array - vocals - out[0].T - out[2].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0 |
|
output_sample_rates['bass'] = sample_rate |
|
|
|
bass = separated_music_arrays['bass'] |
|
drums = separated_music_arrays['drums'] |
|
other = separated_music_arrays['other'] |
|
|
|
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums |
|
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other |
|
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other |
|
|
|
if update_percent_func is not None: |
|
val = 100 * (current_file_number + 0.95) / total_files |
|
update_percent_func(int(val)) |
|
|
|
return separated_music_arrays, output_sample_rates |
|
|
|
|
|
def predict_with_model(options): |
|
for input_audio in options['input_audio']: |
|
if not os.path.isfile(input_audio): |
|
print('Error. No such file: {}. Please check path!'.format(input_audio)) |
|
return |
|
output_folder = options['output_folder'] |
|
if not os.path.isdir(output_folder): |
|
os.mkdir(output_folder) |
|
|
|
only_vocals = False |
|
if 'only_vocals' in options: |
|
if options['only_vocals'] is True: |
|
print('Generate only vocals and instrumental') |
|
only_vocals = True |
|
|
|
model = None |
|
if 'large_gpu' in options: |
|
if options['large_gpu'] is True: |
|
print('Use fast large GPU memory version of code') |
|
model = EnsembleDemucsMDXMusicSeparationModel(options) |
|
if model is None: |
|
print('Use low GPU memory version of code') |
|
model = EnsembleDemucsMDXMusicSeparationModelLowGPU(options) |
|
|
|
update_percent_func = None |
|
if 'update_percent_func' in options: |
|
update_percent_func = options['update_percent_func'] |
|
|
|
for i, input_audio in enumerate(options['input_audio']): |
|
print('Go for: {}'.format(input_audio)) |
|
audio, sr = librosa.load(input_audio, mono=False, sr=44100) |
|
if len(audio.shape) == 1: |
|
audio = np.stack([audio, audio], axis=0) |
|
print("Input audio: {} Sample rate: {}".format(audio.shape, sr)) |
|
result, sample_rates = model.separate_music_file( |
|
audio.T, |
|
sr, |
|
update_percent_func, |
|
i, |
|
len(options['input_audio']), |
|
only_vocals, |
|
) |
|
all_instrum = model.instruments |
|
if only_vocals: |
|
all_instrum = ['vocals'] |
|
for instrum in all_instrum: |
|
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format(instrum) |
|
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype='FLOAT') |
|
print('File created: {}'.format(output_folder + '/' + output_name)) |
|
|
|
|
|
inst = audio.T - result['vocals'] |
|
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum') |
|
sf.write(output_folder + '/' + output_name, inst, sr, subtype='FLOAT') |
|
print('File created: {}'.format(output_folder + '/' + output_name)) |
|
|
|
if not only_vocals: |
|
|
|
inst2 = result['bass'] + result['drums'] + result['other'] |
|
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum2') |
|
sf.write(output_folder + '/' + output_name, inst2, sr, subtype='FLOAT') |
|
print('File created: {}'.format(output_folder + '/' + output_name)) |
|
|
|
if update_percent_func is not None: |
|
val = 100 |
|
update_percent_func(int(val)) |
|
|
|
|
|
def md5(fname): |
|
hash_md5 = hashlib.md5() |
|
with open(fname, "rb") as f: |
|
for chunk in iter(lambda: f.read(4096), b""): |
|
hash_md5.update(chunk) |
|
return hash_md5.hexdigest() |
|
|
|
|
|
if __name__ == '__main__': |
|
start_time = time() |
|
|
|
print("Version: {}".format(__VERSION__)) |
|
m = argparse.ArgumentParser() |
|
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True) |
|
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True) |
|
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.") |
|
m.add_argument("--overlap_large", "-ol", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.6) |
|
m.add_argument("--overlap_small", "-os", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.5) |
|
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.") |
|
m.add_argument("--chunk_size", "-cz", type=int, help="Chunk size for ONNX models. Set lower to reduce GPU memory consumption. Default: 1000000", required=False, default=1000000) |
|
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.") |
|
m.add_argument("--use_kim_model_1", action='store_true', help="Use first version of Kim model (as it was on contest).") |
|
m.add_argument("--only_vocals", action='store_true', help="Only create vocals and instrumental. Skip bass, drums, other") |
|
|
|
options = m.parse_args().__dict__ |
|
print("Options: ".format(options)) |
|
for el in options: |
|
print('{}: {}'.format(el, options[el])) |
|
predict_with_model(options) |
|
print('Time: {:.0f} sec'.format(time() - start_time)) |
|
print('Presented by https://mvsep.com') |
|
|
|
|
|
""" |
|
Example: |
|
python inference.py |
|
--input_audio mixture.wav mixture1.wav |
|
--output_folder ./results/ |
|
--cpu |
|
--overlap_large 0.25 |
|
--overlap_small 0.25 |
|
--chunk_size 500000 |
|
""" |
|
|