Nesbitt
Initial Commit
4068b97
# coding: utf-8
__author__ = 'https://github.com/ZFTurbo/'
if __name__ == '__main__':
import os
gpu_use = "0"
print('GPU use: {}'.format(gpu_use))
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
import numpy as np
import torch
import torch.nn as nn
import os
import argparse
import soundfile as sf
from demucs.states import load_model
from demucs import pretrained
from demucs.apply import apply_model
import onnxruntime as ort
from time import time
import librosa
import hashlib
__VERSION__ = '1.0.1'
class Conv_TDF_net_trim_model(nn.Module):
def __init__(self, device, target_name, L, n_fft, hop=1024):
super(Conv_TDF_net_trim_model, self).__init__()
self.dim_c = 4
self.dim_f, self.dim_t = 3072, 256
self.n_fft = n_fft
self.hop = hop
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
self.target_name = target_name
out_c = self.dim_c * 4 if target_name == '*' else self.dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
self.n = L // 2
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, self.dim_c, self.n_bins, self.dim_t])
return x[:, :, :self.dim_f]
def istft(self, x, freq_pad=None):
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
return x.reshape([-1, 2, self.chunk_size])
def forward(self, x):
x = self.first_conv(x)
x = x.transpose(-1, -2)
ds_outputs = []
for i in range(self.n):
x = self.ds_dense[i](x)
ds_outputs.append(x)
x = self.ds[i](x)
x = self.mid_dense(x)
for i in range(self.n):
x = self.us[i](x)
x *= ds_outputs[-i - 1]
x = self.us_dense[i](x)
x = x.transpose(-1, -2)
x = self.final_conv(x)
return x
def get_models(name, device, load=True, vocals_model_type=0):
if vocals_model_type == 2:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='vocals',
L=11,
n_fft=7680
)
elif vocals_model_type == 3:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='vocals',
L=11,
n_fft=6144
)
return [model_vocals]
def demix_base(mix, device, models, infer_session):
start_time = time()
sources = []
n_sample = mix.shape[1]
for model in models:
trim = model.n_fft // 2
gen_size = model.chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
mix_p = np.concatenate(
(
np.zeros((2, trim)),
mix,
np.zeros((2, pad)),
np.zeros((2, trim))
), 1
)
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i + model.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(device)
with torch.no_grad():
_ort = infer_session
stft_res = model.stft(mix_waves)
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0]
ten = torch.tensor(res)
tar_waves = model.istft(ten.to(device))
tar_waves = tar_waves.cpu()
tar_signal = tar_waves[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).numpy()[:, :-pad]
sources.append(tar_signal)
# print('Time demix base: {:.2f} sec'.format(time() - start_time))
return np.array(sources)
def demix_full(mix, device, chunk_size, models, infer_session, overlap=0.75):
start_time = time()
step = int(chunk_size * (1 - overlap))
# print('Initial shape: {} Chunk size: {} Step: {} Device: {}'.format(mix.shape, chunk_size, step, device))
result = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32)
divider = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32)
total = 0
for i in range(0, mix.shape[-1], step):
total += 1
start = i
end = min(i + chunk_size, mix.shape[-1])
# print('Chunk: {} Start: {} End: {}'.format(total, start, end))
mix_part = mix[:, start:end]
sources = demix_base(mix_part, device, models, infer_session)
# print(sources.shape)
result[..., start:end] += sources
divider[..., start:end] += 1
sources = result / divider
# print('Final shape: {} Overall time: {:.2f}'.format(sources.shape, time() - start_time))
return sources
class EnsembleDemucsMDXMusicSeparationModel:
"""
Doesn't do any separation just passes the input back as output
"""
def __init__(self, options):
"""
options - user options
"""
# print(options)
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
if 'cpu' in options:
if options['cpu']:
device = 'cpu'
print('Use device: {}'.format(device))
self.single_onnx = False
if 'single_onnx' in options:
if options['single_onnx']:
self.single_onnx = True
print('Use single vocal ONNX')
self.kim_model_1 = False
if 'use_kim_model_1' in options:
if options['use_kim_model_1']:
self.kim_model_1 = True
if self.kim_model_1:
print('Use Kim model 1')
else:
print('Use Kim model 2')
self.overlap_large = float(options['overlap_large'])
self.overlap_small = float(options['overlap_small'])
if self.overlap_large > 0.99:
self.overlap_large = 0.99
if self.overlap_large < 0.0:
self.overlap_large = 0.0
if self.overlap_small > 0.99:
self.overlap_small = 0.99
if self.overlap_small < 0.0:
self.overlap_small = 0.0
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
model_path = model_folder + '04573f0d-f3cf25b2.th'
if not os.path.isfile(model_path):
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
model_vocals = load_model(model_path)
model_vocals.to(device)
self.model_vocals_only = model_vocals
self.models = []
self.weights_vocals = np.array([10, 1, 8, 9])
self.weights_bass = np.array([19, 4, 5, 8])
self.weights_drums = np.array([18, 2, 4, 9])
self.weights_other = np.array([14, 2, 5, 10])
model1 = pretrained.get_model('htdemucs_ft')
model1.to(device)
self.models.append(model1)
model2 = pretrained.get_model('htdemucs')
model2.to(device)
self.models.append(model2)
model3 = pretrained.get_model('htdemucs_6s')
model3.to(device)
self.models.append(model3)
model4 = pretrained.get_model('hdemucs_mmi')
model4.to(device)
self.models.append(model4)
if 0:
for model in self.models:
print(model.sources)
'''
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
['drums', 'bass', 'other', 'vocals']
'''
if device == 'cpu':
chunk_size = 200000000
providers = ["CPUExecutionProvider"]
else:
chunk_size = 1000000
providers = ["CUDAExecutionProvider"]
if 'chunk_size' in options:
chunk_size = int(options['chunk_size'])
# MDX-B model 1 initialization
self.chunk_size = chunk_size
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
if self.kim_model_1:
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx'
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx'
else:
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx'
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx'
if not os.path.isfile(model_path_onnx1):
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
print('Model path: {}'.format(model_path_onnx1))
print('Device: {} Chunk size: {}'.format(device, chunk_size))
self.infer_session1 = ort.InferenceSession(
model_path_onnx1,
providers=providers,
provider_options=[{"device_id": 0}],
)
if self.single_onnx is False:
# MDX-B model 2 initialization
self.chunk_size = chunk_size
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
root_path = os.path.dirname(os.path.realpath(__file__)) + '/'
model_path_onnx2 = model_folder + 'Kim_Inst.onnx'
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx'
if not os.path.isfile(model_path_onnx2):
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
print('Model path: {}'.format(model_path_onnx2))
print('Device: {} Chunk size: {}'.format(device, chunk_size))
self.infer_session2 = ort.InferenceSession(
model_path_onnx2,
providers=providers,
provider_options=[{"device_id": 0}],
)
self.device = device
pass
@property
def instruments(self):
""" DO NOT CHANGE """
return ['bass', 'drums', 'other', 'vocals']
def raise_aicrowd_error(self, msg):
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
raise NameError(msg)
def separate_music_file(
self,
mixed_sound_array,
sample_rate,
update_percent_func=None,
current_file_number=0,
total_files=0,
only_vocals=False,
):
"""
Implements the sound separation for a single sound file
Inputs: Outputs from soundfile.read('mixture.wav')
mixed_sound_array
sample_rate
Outputs:
separated_music_arrays: Dictionary numpy array of each separated instrument
output_sample_rates: Dictionary of sample rates separated sequence
"""
# print('Update percent func: {}'.format(update_percent_func))
separated_music_arrays = {}
output_sample_rates = {}
audio = np.expand_dims(mixed_sound_array.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
overlap_large = self.overlap_large
overlap_small = self.overlap_small
# Get Demics vocal only
model = self.model_vocals_only
shifts = 1
overlap = overlap_large
vocals_demucs = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.10) / total_files
update_percent_func(int(val))
vocals_demucs += 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.20) / total_files
update_percent_func(int(val))
overlap = overlap_large
sources1 = demix_full(
mixed_sound_array.T,
self.device,
self.chunk_size,
self.mdx_models1,
self.infer_session1,
overlap=overlap
)[0]
vocals_mdxb1 = sources1
if update_percent_func is not None:
val = 100 * (current_file_number + 0.30) / total_files
update_percent_func(int(val))
if self.single_onnx is False:
sources2 = -demix_full(
-mixed_sound_array.T,
self.device,
self.chunk_size,
self.mdx_models2,
self.infer_session2,
overlap=overlap
)[0]
# it's instrumental so need to invert
instrum_mdxb2 = sources2
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2
if update_percent_func is not None:
val = 100 * (current_file_number + 0.40) / total_files
update_percent_func(int(val))
# Ensemble vocals for MDX and Demucs
if self.single_onnx is False:
weights = np.array([12, 8, 3])
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum()
else:
weights = np.array([6, 1])
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum()
# vocals
separated_music_arrays['vocals'] = vocals
output_sample_rates['vocals'] = sample_rate
if not only_vocals:
# Generate instrumental
instrum = mixed_sound_array - vocals
audio = np.expand_dims(instrum.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
all_outs = []
for i, model in enumerate(self.models):
if i == 0:
overlap = overlap_small
elif i > 0:
overlap = overlap_large
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
update_percent_func(int(val))
if i == 2:
# ['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
out[2] = out[2] + out[4] + out[5]
out = out[:4]
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
out = np.array(all_outs).sum(axis=0)
out[0] = out[0] / self.weights_drums.sum()
out[1] = out[1] / self.weights_bass.sum()
out[2] = out[2] / self.weights_other.sum()
out[3] = out[3] / self.weights_vocals.sum()
# other
res = mixed_sound_array - vocals - out[0].T - out[1].T
res = np.clip(res, -1, 1)
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
output_sample_rates['other'] = sample_rate
# drums
res = mixed_sound_array - vocals - out[1].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
output_sample_rates['drums'] = sample_rate
# bass
res = mixed_sound_array - vocals - out[0].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
output_sample_rates['bass'] = sample_rate
bass = separated_music_arrays['bass']
drums = separated_music_arrays['drums']
other = separated_music_arrays['other']
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
if update_percent_func is not None:
val = 100 * (current_file_number + 0.95) / total_files
update_percent_func(int(val))
return separated_music_arrays, output_sample_rates
class EnsembleDemucsMDXMusicSeparationModelLowGPU:
"""
Doesn't do any separation just passes the input back as output
"""
def __init__(self, options):
"""
options - user options
"""
# print(options)
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
if 'cpu' in options:
if options['cpu']:
device = 'cpu'
print('Use device: {}'.format(device))
self.single_onnx = False
if 'single_onnx' in options:
if options['single_onnx']:
self.single_onnx = True
print('Use single vocal ONNX')
self.kim_model_1 = False
if 'use_kim_model_1' in options:
if options['use_kim_model_1']:
self.kim_model_1 = True
if self.kim_model_1:
print('Use Kim model 1')
else:
print('Use Kim model 2')
self.overlap_large = float(options['overlap_large'])
self.overlap_small = float(options['overlap_small'])
if self.overlap_large > 0.99:
self.overlap_large = 0.99
if self.overlap_large < 0.0:
self.overlap_large = 0.0
if self.overlap_small > 0.99:
self.overlap_small = 0.99
if self.overlap_small < 0.0:
self.overlap_small = 0.0
self.weights_vocals = np.array([10, 1, 8, 9])
self.weights_bass = np.array([19, 4, 5, 8])
self.weights_drums = np.array([18, 2, 4, 9])
self.weights_other = np.array([14, 2, 5, 10])
if device == 'cpu':
chunk_size = 200000000
self.providers = ["CPUExecutionProvider"]
else:
chunk_size = 1000000
self.providers = ["CUDAExecutionProvider"]
if 'chunk_size' in options:
chunk_size = int(options['chunk_size'])
self.chunk_size = chunk_size
self.device = device
pass
@property
def instruments(self):
""" DO NOT CHANGE """
return ['bass', 'drums', 'other', 'vocals']
def raise_aicrowd_error(self, msg):
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
raise NameError(msg)
def separate_music_file(
self,
mixed_sound_array,
sample_rate,
update_percent_func=None,
current_file_number=0,
total_files=0,
only_vocals=False
):
"""
Implements the sound separation for a single sound file
Inputs: Outputs from soundfile.read('mixture.wav')
mixed_sound_array
sample_rate
Outputs:
separated_music_arrays: Dictionary numpy array of each separated instrument
output_sample_rates: Dictionary of sample rates separated sequence
"""
# print('Update percent func: {}'.format(update_percent_func))
separated_music_arrays = {}
output_sample_rates = {}
audio = np.expand_dims(mixed_sound_array.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
overlap_large = self.overlap_large
overlap_small = self.overlap_small
# Get Demucs vocal only
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
model_path = model_folder + '04573f0d-f3cf25b2.th'
if not os.path.isfile(model_path):
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
model_vocals = load_model(model_path)
model_vocals.to(self.device)
shifts = 1
overlap = overlap_large
vocals_demucs = 0.5 * apply_model(model_vocals, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.10) / total_files
update_percent_func(int(val))
vocals_demucs += 0.5 * -apply_model(model_vocals, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy()
model_vocals = model_vocals.cpu()
del model_vocals
if update_percent_func is not None:
val = 100 * (current_file_number + 0.20) / total_files
update_percent_func(int(val))
# MDX-B model 1 initialization
mdx_models1 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2)
if self.kim_model_1:
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx'
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx'
else:
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx'
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx'
if not os.path.isfile(model_path_onnx1):
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
print('Model path: {}'.format(model_path_onnx1))
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size))
infer_session1 = ort.InferenceSession(
model_path_onnx1,
providers=self.providers,
provider_options=[{"device_id": 0}],
)
overlap = overlap_large
sources1 = demix_full(
mixed_sound_array.T,
self.device,
self.chunk_size,
mdx_models1,
infer_session1,
overlap=overlap
)[0]
vocals_mdxb1 = sources1
del infer_session1
del mdx_models1
if update_percent_func is not None:
val = 100 * (current_file_number + 0.30) / total_files
update_percent_func(int(val))
if self.single_onnx is False:
# MDX-B model 2 initialization
mdx_models2 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2)
root_path = os.path.dirname(os.path.realpath(__file__)) + '/'
model_path_onnx2 = model_folder + 'Kim_Inst.onnx'
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx'
if not os.path.isfile(model_path_onnx2):
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
print('Model path: {}'.format(model_path_onnx2))
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size))
infer_session2 = ort.InferenceSession(
model_path_onnx2,
providers=self.providers,
provider_options=[{"device_id": 0}],
)
overlap = overlap_large
sources2 = -demix_full(
-mixed_sound_array.T,
self.device,
self.chunk_size,
mdx_models2,
infer_session2,
overlap=overlap
)[0]
# it's instrumental so need to invert
instrum_mdxb2 = sources2
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2
del infer_session2
del mdx_models2
if update_percent_func is not None:
val = 100 * (current_file_number + 0.40) / total_files
update_percent_func(int(val))
# Ensemble vocals for MDX and Demucs
if self.single_onnx is False:
weights = np.array([12, 8, 3])
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum()
else:
weights = np.array([6, 1])
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum()
# Generate instrumental
instrum = mixed_sound_array - vocals
audio = np.expand_dims(instrum.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
all_outs = []
i = 0
overlap = overlap_small
model = pretrained.get_model('htdemucs_ft')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
update_percent_func(int(val))
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
i = 1
overlap = overlap_large
model = pretrained.get_model('htdemucs')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
update_percent_func(int(val))
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
i = 2
overlap = overlap_large
model = pretrained.get_model('htdemucs_6s')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
update_percent_func(int(val))
# More stems need to add
out[2] = out[2] + out[4] + out[5]
out = out[:4]
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
i = 3
model = pretrained.get_model('hdemucs_mmi')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
if update_percent_func is not None:
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files
update_percent_func(int(val))
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
out = np.array(all_outs).sum(axis=0)
out[0] = out[0] / self.weights_drums.sum()
out[1] = out[1] / self.weights_bass.sum()
out[2] = out[2] / self.weights_other.sum()
out[3] = out[3] / self.weights_vocals.sum()
# vocals
separated_music_arrays['vocals'] = vocals
output_sample_rates['vocals'] = sample_rate
# other
res = mixed_sound_array - vocals - out[0].T - out[1].T
res = np.clip(res, -1, 1)
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
output_sample_rates['other'] = sample_rate
# drums
res = mixed_sound_array - vocals - out[1].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
output_sample_rates['drums'] = sample_rate
# bass
res = mixed_sound_array - vocals - out[0].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
output_sample_rates['bass'] = sample_rate
bass = separated_music_arrays['bass']
drums = separated_music_arrays['drums']
other = separated_music_arrays['other']
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
if update_percent_func is not None:
val = 100 * (current_file_number + 0.95) / total_files
update_percent_func(int(val))
return separated_music_arrays, output_sample_rates
def predict_with_model(options):
for input_audio in options['input_audio']:
if not os.path.isfile(input_audio):
print('Error. No such file: {}. Please check path!'.format(input_audio))
return
output_folder = options['output_folder']
if not os.path.isdir(output_folder):
os.mkdir(output_folder)
only_vocals = False
if 'only_vocals' in options:
if options['only_vocals'] is True:
print('Generate only vocals and instrumental')
only_vocals = True
model = None
if 'large_gpu' in options:
if options['large_gpu'] is True:
print('Use fast large GPU memory version of code')
model = EnsembleDemucsMDXMusicSeparationModel(options)
if model is None:
print('Use low GPU memory version of code')
model = EnsembleDemucsMDXMusicSeparationModelLowGPU(options)
update_percent_func = None
if 'update_percent_func' in options:
update_percent_func = options['update_percent_func']
for i, input_audio in enumerate(options['input_audio']):
print('Go for: {}'.format(input_audio))
audio, sr = librosa.load(input_audio, mono=False, sr=44100)
if len(audio.shape) == 1:
audio = np.stack([audio, audio], axis=0)
print("Input audio: {} Sample rate: {}".format(audio.shape, sr))
result, sample_rates = model.separate_music_file(
audio.T,
sr,
update_percent_func,
i,
len(options['input_audio']),
only_vocals,
)
all_instrum = model.instruments
if only_vocals:
all_instrum = ['vocals']
for instrum in all_instrum:
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format(instrum)
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype='FLOAT')
print('File created: {}'.format(output_folder + '/' + output_name))
# instrumental part 1
inst = audio.T - result['vocals']
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum')
sf.write(output_folder + '/' + output_name, inst, sr, subtype='FLOAT')
print('File created: {}'.format(output_folder + '/' + output_name))
if not only_vocals:
# instrumental part 2
inst2 = result['bass'] + result['drums'] + result['other']
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum2')
sf.write(output_folder + '/' + output_name, inst2, sr, subtype='FLOAT')
print('File created: {}'.format(output_folder + '/' + output_name))
if update_percent_func is not None:
val = 100
update_percent_func(int(val))
def md5(fname):
hash_md5 = hashlib.md5()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
if __name__ == '__main__':
start_time = time()
print("Version: {}".format(__VERSION__))
m = argparse.ArgumentParser()
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True)
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True)
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.")
m.add_argument("--overlap_large", "-ol", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.6)
m.add_argument("--overlap_small", "-os", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.5)
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.")
m.add_argument("--chunk_size", "-cz", type=int, help="Chunk size for ONNX models. Set lower to reduce GPU memory consumption. Default: 1000000", required=False, default=1000000)
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.")
m.add_argument("--use_kim_model_1", action='store_true', help="Use first version of Kim model (as it was on contest).")
m.add_argument("--only_vocals", action='store_true', help="Only create vocals and instrumental. Skip bass, drums, other")
options = m.parse_args().__dict__
print("Options: ".format(options))
for el in options:
print('{}: {}'.format(el, options[el]))
predict_with_model(options)
print('Time: {:.0f} sec'.format(time() - start_time))
print('Presented by https://mvsep.com')
"""
Example:
python inference.py
--input_audio mixture.wav mixture1.wav
--output_folder ./results/
--cpu
--overlap_large 0.25
--overlap_small 0.25
--chunk_size 500000
"""