|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from contextlib import contextmanager |
|
import math |
|
import os |
|
import tempfile |
|
import typing as tp |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
from torch.utils.data import Subset |
|
|
|
|
|
def unfold(a, kernel_size, stride): |
|
"""Given input of size [*OT, T], output Tensor of size [*OT, F, K] |
|
with K the kernel size, by extracting frames with the given stride. |
|
|
|
This will pad the input so that `F = ceil(T / K)`. |
|
|
|
see https://github.com/pytorch/pytorch/issues/60466 |
|
""" |
|
*shape, length = a.shape |
|
n_frames = math.ceil(length / stride) |
|
tgt_length = (n_frames - 1) * stride + kernel_size |
|
a = F.pad(a, (0, tgt_length - length)) |
|
strides = list(a.stride()) |
|
assert strides[-1] == 1, 'data should be contiguous' |
|
strides = strides[:-1] + [stride, 1] |
|
return a.as_strided([*shape, n_frames, kernel_size], strides) |
|
|
|
|
|
def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]): |
|
""" |
|
Center trim `tensor` with respect to `reference`, along the last dimension. |
|
`reference` can also be a number, representing the length to trim to. |
|
If the size difference != 0 mod 2, the extra sample is removed on the right side. |
|
""" |
|
ref_size: int |
|
if isinstance(reference, torch.Tensor): |
|
ref_size = reference.size(-1) |
|
else: |
|
ref_size = reference |
|
delta = tensor.size(-1) - ref_size |
|
if delta < 0: |
|
raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.") |
|
if delta: |
|
tensor = tensor[..., delta // 2:-(delta - delta // 2)] |
|
return tensor |
|
|
|
|
|
def pull_metric(history: tp.List[dict], name: str): |
|
out = [] |
|
for metrics in history: |
|
metric = metrics |
|
for part in name.split("."): |
|
metric = metric[part] |
|
out.append(metric) |
|
return out |
|
|
|
|
|
def EMA(beta: float = 1): |
|
""" |
|
Exponential Moving Average callback. |
|
Returns a single function that can be called to repeatidly update the EMA |
|
with a dict of metrics. The callback will return |
|
the new averaged dict of metrics. |
|
|
|
Note that for `beta=1`, this is just plain averaging. |
|
""" |
|
fix: tp.Dict[str, float] = defaultdict(float) |
|
total: tp.Dict[str, float] = defaultdict(float) |
|
|
|
def _update(metrics: dict, weight: float = 1) -> dict: |
|
nonlocal total, fix |
|
for key, value in metrics.items(): |
|
total[key] = total[key] * beta + weight * float(value) |
|
fix[key] = fix[key] * beta + weight |
|
return {key: tot / fix[key] for key, tot in total.items()} |
|
return _update |
|
|
|
|
|
def sizeof_fmt(num: float, suffix: str = 'B'): |
|
""" |
|
Given `num` bytes, return human readable size. |
|
Taken from https://stackoverflow.com/a/1094933 |
|
""" |
|
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']: |
|
if abs(num) < 1024.0: |
|
return "%3.1f%s%s" % (num, unit, suffix) |
|
num /= 1024.0 |
|
return "%.1f%s%s" % (num, 'Yi', suffix) |
|
|
|
|
|
@contextmanager |
|
def temp_filenames(count: int, delete=True): |
|
names = [] |
|
try: |
|
for _ in range(count): |
|
names.append(tempfile.NamedTemporaryFile(delete=False).name) |
|
yield names |
|
finally: |
|
if delete: |
|
for name in names: |
|
os.unlink(name) |
|
|
|
|
|
def random_subset(dataset, max_samples: int, seed: int = 42): |
|
if max_samples >= len(dataset): |
|
return dataset |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
perm = torch.randperm(len(dataset), generator=generator) |
|
return Subset(dataset, perm[:max_samples].tolist()) |
|
|
|
|
|
class DummyPoolExecutor: |
|
class DummyResult: |
|
def __init__(self, func, *args, **kwargs): |
|
self.func = func |
|
self.args = args |
|
self.kwargs = kwargs |
|
|
|
def result(self): |
|
return self.func(*self.args, **self.kwargs) |
|
|
|
def __init__(self, workers=0): |
|
pass |
|
|
|
def submit(self, func, *args, **kwargs): |
|
return DummyPoolExecutor.DummyResult(func, *args, **kwargs) |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, exc_tb): |
|
return |
|
|