Spaces:
Sleeping
Sleeping
File size: 7,867 Bytes
bcaad24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import sys
import time
from importlib.metadata import version
from os import remove
from os.path import exists
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
from transformers import HubertForCTC, Wav2Vec2Processor
# Config
model_name = "Yehor/hubert-uk"
torchaudio_backend = "soundfile"
min_duration = 0.5
max_duration = 60
concurrency_limit = 5
use_torch_compile = False
# Torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load the model
asr_model = HubertForCTC.from_pretrained(
model_name, torch_dtype=torch_dtype, device_map=device
)
processor = Wav2Vec2Processor.from_pretrained(model_name)
if use_torch_compile:
asr_model = torch.compile(asr_model)
# Elements
examples = [
"example_1.wav",
"example_2.wav",
"example_3.wav",
"example_4.wav",
"example_5.wav",
"example_6.wav",
]
examples_table = """
| File | Text |
| ------------- | ------------- |
| `example_1.wav` | тема про яку не люблять говорити офіційні джерела у генштабі і міноборони це хімічна зброя окупанти вже тривалий час використовують хімічну зброю заборонену |
| `example_2.wav` | всіма конвенціями якщо спочатку це були гранати з дронів то тепер фіксують випадки застосування |
| `example_3.wav` | хімічних снарядів причому склад отруйної речовони різний а отже й наслідки для наших військових теж різні |
| `example_4.wav` | використовує на фронті все що має і хімічна зброя не вийняток тож з чим маємо справу розбиралася марія моганисян |
| `example_5.wav` | двох тисяч випадків застосування росіянами боєприпасів споряджених небезпечними хімічними речовинами |
| `example_6.wav` | на всі писані норми марія моганисян олександр моторний спецкор марафон єдині новини |
""".strip()
authors_table = """
## Authors
Follow them in social networks and **contact** if you need any help or have any questions:
| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> <br> **Yehor Smoliakov** |
|------------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram |
| https://x.com/yehor_smoliakov at X |
| https://github.com/egorsmkv at GitHub |
| https://huggingface.co/Yehor at Hugging Face |
| or use [email protected] |
""".strip()
description_head = f"""
## Overview
This space uses https://huggingface.co/Yehor/hubert-uk model to recognize audio files.
> Due to resource limitations, audio duration **must not** exceed **{max_duration}** seconds.
""".strip()
description_foot = f"""
## Community
- **Discord**: https://discord.gg/yVAjkBgmt4
- Speech Recognition: https://t.me/speech_recognition_uk
- Speech Synthesis: https://t.me/speech_synthesis_uk
## More
Check out other ASR models: https://github.com/egorsmkv/speech-recognition-uk
{authors_table}
""".strip()
transcription_value = """
Recognized text will appear here.
Choose **an example file** below the Recognize button, upload **your audio file**, or use **the microphone** to record own voice.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
- Torch device: {device}
- Torch dtype: {torch_dtype}
- Use torch.compile: {use_torch_compile}
""".strip()
tech_libraries = f"""
#### Libraries
- torch: {version('torch')}
- torchaudio: {version('torchaudio')}
- transformers: {version('transformers')}
- accelerate: {version('accelerate')}
- streamlit: {version('streamlit')}
""".strip()
# UploadedFile
def inference(uploaded_file: UploadedFile):
audio_path = uploaded_file.file_id + '.wav'
with open(audio_path, 'wb') as f:
f.write(uploaded_file.getvalue())
if not audio_path:
st.error("Please upload an audio file.")
return
st.info("Starting recognition")
meta = torchaudio.info(audio_path, backend=torchaudio_backend)
duration = meta.num_frames / meta.sample_rate
if duration < min_duration:
st.error(
f"The duration of the file is less than {min_duration} seconds, it is {round(duration, 2)} seconds."
)
return
if duration > max_duration:
st.error(f"The duration of the file exceeds {max_duration} seconds.")
return
paths = [
audio_path,
]
results = []
for path in paths:
t0 = time.time()
meta = torchaudio.info(audio_path, backend=torchaudio_backend)
audio_duration = meta.num_frames / meta.sample_rate
audio_input, sr = torchaudio.load(path, backend=torchaudio_backend)
if meta.num_channels > 1:
audio_input = torch.mean(audio_input, dim=0, keepdim=True)
if meta.sample_rate != 16_000:
resampler = T.Resample(sr, 16_000, dtype=audio_input.dtype)
audio_input = resampler(audio_input)
audio_input = audio_input.squeeze(0).numpy()
inputs = processor(
[audio_input], sampling_rate=16_000, padding=True
).input_values
features = torch.tensor(np.array(inputs), dtype=torch_dtype).to(device)
with torch.inference_mode():
logits = asr_model(features).logits
predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids)
if not predictions:
predictions = "-"
elapsed_time = round(time.time() - t0, 2)
rtf = round(elapsed_time / audio_duration, 4)
audio_duration = round(audio_duration, 2)
results.append(
{
"path": path.split("/")[-1],
"transcription": "\n".join(predictions),
"audio_duration": audio_duration,
"rtf": rtf,
}
)
st.info("Finished!")
result_texts = []
for result in results:
result_texts.append(f'**{result["path"]}**')
result_texts.append("\n\n")
result_texts.append(f'> {result["transcription"]}')
result_texts.append("\n\n")
result_texts.append(f'**Audio duration**: {result["audio_duration"]}')
result_texts.append("\n")
result_texts.append(f'**Real-Time Factor**: {result["rtf"]}')
if exists(audio_path):
remove(audio_path)
return "\n".join(result_texts)
st.title("Speech-to-Text for Ukrainian using HuBERT")
st.markdown(description_head)
st.markdown("## Usage")
audio_file = st.file_uploader("Upload an audio file", type=["wav"])
if st.button("Recognize"):
if audio_file is not None:
transcription = inference(audio_file)
st.markdown(transcription)
else:
st.error("Please upload an audio file.")
st.markdown("### Examples")
st.markdown(examples_table)
st.markdown(description_foot, unsafe_allow_html=True)
st.markdown("### Environment")
st.markdown(tech_env)
st.markdown(tech_libraries)
|