import torch import gradio as gr from transformers import AutoModel, pipeline, AutoTokenizer # from issue: https://discuss.huggingface.co/t/how-to-install-flash-attention-on-hf-gradio-space/70698/2 import subprocess # InternVL2 需要的 flash_attn 这个依赖只能这样运行时装 subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) model_name = "OpenGVLab/InternVL2-8B" model = ( AutoModel.from_pretrained( model_name, torch_dtype=torch.bfloat16, # low_cpu_mem_usage=True, trust_remote_code=True, ) .eval() .cuda() ) try: tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) inference = pipeline( task="visual-question-answering", model=model, tokenizer=tokenizer ) except Exception as error: raise gr.Error("👌" + str(error), duration=30) def predict(input_img, questions): try: predictions = inference(question=questions, image=input_img) return str(predictions) except Exception as e: # 捕获异常,并将错误信息转换为字符串 error_message = "❌" + str(e) # 抛出gradio.Error来展示错误弹窗 raise gr.Error(error_message, duration=25) gradio_app = gr.Interface( predict, inputs=[ gr.Image(label="Select A Image", sources=["upload", "webcam"], type="pil"), "text", ], outputs="text", title="Plz ask my anything", ) if __name__ == "__main__": gradio_app.launch(show_error=True, debug=True)