import torch import gradio as gr from transformers import AutoModel, pipeline, AutoTokenizer path = "radna/Triton-InternVL2-2B" model = ( AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ) .eval() .cuda() ) tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) inference = pipeline(task="visual-question-answering", model=model, tokenizer=tokenizer) def predict(input_img, questions): try: predictions = inference(question=questions, image=input_img) return str(predictions) except Exception as e: # 捕获异常,并将错误信息转换为字符串 error_message = str(e) # 抛出gradio.Error来展示错误弹窗 raise gr.Error(error_message, duration=25) gradio_app = gr.Interface( predict, inputs=[ gr.Image(label="Select A Image", sources=["upload", "webcam"], type="pil"), "text", ], outputs="text", title="Plz ask my anything", ) if __name__ == "__main__": gradio_app.launch(show_error=True, debug=True)