from typing import Union, List import tempfile import numpy as np import PIL.Image import matplotlib.cm as cm import mediapy import torch from decord import VideoReader, cpu def read_video_frames(video_path, process_length, target_fps, max_res): print("==> processing video: ", video_path) vid = VideoReader(video_path, ctx=cpu(0)) print("==> original video shape: ", (len(vid), *vid.get_batch([0]).shape[1:])) original_height, original_width = vid.get_batch([0]).shape[1:3] if max(original_height, original_width) > max_res: scale = max_res / max(original_height, original_width) height = round(original_height * scale) width = round(original_width * scale) else: height = original_height width = original_width vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height) fps = vid.get_avg_fps() if target_fps == -1 else target_fps stride = round(vid.get_avg_fps() / fps) stride = max(stride, 1) frames_idx = list(range(0, len(vid), stride)) print( f"==> downsampled shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}, with stride: {stride}" ) if process_length != -1 and process_length < len(frames_idx): frames_idx = frames_idx[:process_length] print( f"==> final processing shape: {len(frames_idx), *vid.get_batch([0]).shape[1:]}" ) frames = vid.get_batch(frames_idx).asnumpy().astype(np.uint8) frames = [PIL.Image.fromarray(x) for x in frames] return frames, fps def save_video( video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10, crf: int = 18, ) -> str: if output_video_path is None: output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name if isinstance(video_frames[0], np.ndarray): video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames] elif isinstance(video_frames[0], PIL.Image.Image): video_frames = [np.array(frame) for frame in video_frames] mediapy.write_video(output_video_path, video_frames, fps=fps, crf=crf) return output_video_path def vis_sequence_normal(normals: np.ndarray): normals = normals.clip(-1., 1.) normals = normals * 0.5 + 0.5 return normals