NormalCrafter / normalcrafter /normal_crafter_ppl.py
Yanrui95's picture
Upload folder using huggingface_hub
8c0f498 verified
raw
history blame
19.4 kB
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import math
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
from diffusers import DiffusionPipeline
from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion import StableVideoDiffusionPipelineOutput, StableVideoDiffusionPipeline
from PIL import Image
import cv2
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class NormalCrafterPipeline(StableVideoDiffusionPipeline):
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance, scale=1, image_size=None):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.video_processor.pil_to_numpy(image) # (0, 255) -> (0, 1)
image = self.video_processor.numpy_to_pt(image) # (n, h, w, c) -> (n, c, h, w)
# We normalize the image before resizing to match with the original implementation.
# Then we unnormalize it after resizing.
pixel_values = image
B, C, H, W = pixel_values.shape
patches = [pixel_values]
# patches = []
for i in range(1, scale):
num_patches_HW_this_level = i + 1
patch_H = H // num_patches_HW_this_level + 1
patch_W = W // num_patches_HW_this_level + 1
for j in range(num_patches_HW_this_level):
for k in range(num_patches_HW_this_level):
patches.append(pixel_values[:, :, j*patch_H:(j+1)*patch_H, k*patch_W:(k+1)*patch_W])
def encode_image(image):
image = image * 2.0 - 1.0
if image_size is not None:
image = _resize_with_antialiasing(image, image_size)
else:
image = _resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
# Normalize the image with for CLIP input
image = self.feature_extractor(
images=image,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
if len(image_embeddings.shape) < 3:
image_embeddings = image_embeddings.unsqueeze(1)
return image_embeddings
image_embeddings = []
for patch in patches:
image_embeddings.append(encode_image(patch))
image_embeddings = torch.cat(image_embeddings, dim=1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
# import pdb
# pdb.set_trace()
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
negative_image_embeddings = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
return image_embeddings
def ecnode_video_vae(self, images, chunk_size: int = 14):
if isinstance(images, list):
width, height = images[0].size
else:
height, width = images[0].shape[:2]
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float32)
device = self._execution_device
images = self.video_processor.preprocess_video(images, height=height, width=width).to(device, self.vae.dtype) # torch type in range(-1, 1) with (1,3,h,w)
images = images.squeeze(0) # from (1, c, t, h, w) -> (c, t, h, w)
images = images.permute(1,0,2,3) # c, t, h, w -> (t, c, h, w)
video_latents = []
# chunk_size = 14
for i in range(0, images.shape[0], chunk_size):
video_latents.append(self.vae.encode(images[i : i + chunk_size]).latent_dist.mode())
image_latents = torch.cat(video_latents)
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
return image_latents
def pad_image(self, images, scale=64):
def get_pad(newW, W):
pad_W = (newW - W) // 2
if W % 2 == 1:
pad_Ws = [pad_W, pad_W + 1]
else:
pad_Ws = [pad_W, pad_W]
return pad_Ws
if type(images[0]) is np.ndarray:
H, W = images[0].shape[:2]
else:
W, H = images[0].size
if W % scale == 0 and H % scale == 0:
return images, None
newW = int(np.ceil(W / scale) * scale)
newH = int(np.ceil(H / scale) * scale)
pad_Ws = get_pad(newW, W)
pad_Hs = get_pad(newH, H)
new_images = []
for image in images:
if type(image) is np.ndarray:
image = cv2.copyMakeBorder(image, *pad_Hs, *pad_Ws, cv2.BORDER_CONSTANT, value=(1.,1.,1.))
new_images.append(image)
else:
image = np.array(image)
image = cv2.copyMakeBorder(image, *pad_Hs, *pad_Ws, cv2.BORDER_CONSTANT, value=(255,255,255))
new_images.append(Image.fromarray(image))
return new_images, pad_Hs+pad_Ws
def unpad_image(self, v, pad_HWs):
t, b, l, r = pad_HWs
if t > 0 or b > 0:
v = v[:, :, t:-b]
if l > 0 or r > 0:
v = v[:, :, :, l:-r]
return v
@torch.no_grad()
def __call__(
self,
images: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
decode_chunk_size: Optional[int] = None,
time_step_size: Optional[int] = 1,
window_size: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
return_dict: bool = True
):
images, pad_HWs = self.pad_image(images)
# 0. Default height and width to unet
width, height = images[0].size
num_frames = len(images)
# 1. Check inputs. Raise error if not correct
self.check_inputs(images, height, width)
# 2. Define call parameters
batch_size = 1
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
self._guidance_scale = 1.0
num_videos_per_prompt = 1
do_classifier_free_guidance = False
num_inference_steps = 1
fps = 7
motion_bucket_id = 127
noise_aug_strength = 0.
num_videos_per_prompt = 1
output_type = "np"
data_keys = ["normal"]
use_linear_merge = True
determineTrain = True
encode_image_scale = 1
encode_image_WH = None
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else 7
# 3. Encode input image using using clip. (num_image * num_videos_per_prompt, 1, 1024)
image_embeddings = self._encode_image(images, device, num_videos_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, scale=encode_image_scale, image_size=encode_image_WH)
# 4. Encode input image using VAE
image_latents = self.ecnode_video_vae(images, chunk_size=decode_chunk_size).to(image_embeddings.dtype)
# image_latents [num_frames, channels, height, width] ->[1, num_frames, channels, height, width]
image_latents = image_latents.unsqueeze(0)
# 5. Get Added Time IDs
added_time_ids = self._get_add_time_ids(
fps,
motion_bucket_id,
noise_aug_strength,
image_embeddings.dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
)
added_time_ids = added_time_ids.to(device)
# get Start and End frame idx for each window
def get_ses(num_frames):
ses = []
for i in range(0, num_frames, time_step_size):
ses.append([i, i+window_size])
num_to_remain = 0
for se in ses:
if se[1] > num_frames:
continue
num_to_remain += 1
ses = ses[:num_to_remain]
if ses[-1][-1] < num_frames:
ses.append([num_frames - window_size, num_frames])
return ses
ses = get_ses(num_frames)
pred = None
for i, se in enumerate(ses):
window_num_frames = window_size
window_image_embeddings = image_embeddings[se[0]:se[1]]
window_image_latents = image_latents[:, se[0]:se[1]]
window_added_time_ids = added_time_ids
# import pdb
# pdb.set_trace()
if i == 0 or time_step_size == window_size:
to_replace_latents = None
else:
last_se = ses[i-1]
num_to_replace_latents = last_se[1] - se[0]
to_replace_latents = pred[:, -num_to_replace_latents:]
latents = self.generate(
num_inference_steps,
device,
batch_size,
num_videos_per_prompt,
window_num_frames,
height,
width,
window_image_embeddings,
generator,
determineTrain,
to_replace_latents,
do_classifier_free_guidance,
window_image_latents,
window_added_time_ids
)
# merge last_latents and current latents in overlap window
if to_replace_latents is not None and use_linear_merge:
num_img_condition = to_replace_latents.shape[1]
weight = torch.linspace(1., 0., num_img_condition+2)[1:-1].to(device)
weight = weight[None, :, None, None, None]
latents[:, :num_img_condition] = to_replace_latents * weight + latents[:, :num_img_condition] * (1 - weight)
if pred is None:
pred = latents
else:
pred = torch.cat([pred[:, :se[0]], latents], dim=1)
if not output_type == "latent":
# cast back to fp16 if needed
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# latents has shape (1, num_frames, 12, h, w)
def decode_latents(latents, num_frames, decode_chunk_size):
frames = self.decode_latents(latents, num_frames, decode_chunk_size) # in range(-1, 1)
frames = self.video_processor.postprocess_video(video=frames, output_type="np")
frames = frames * 2 - 1 # from range(0, 1) -> range(-1, 1)
return frames
frames = decode_latents(pred, num_frames, decode_chunk_size)
if pad_HWs is not None:
frames = self.unpad_image(frames, pad_HWs)
else:
frames = pred
self.maybe_free_model_hooks()
if not return_dict:
return frames
return StableVideoDiffusionPipelineOutput(frames=frames)
def generate(
self,
num_inference_steps,
device,
batch_size,
num_videos_per_prompt,
num_frames,
height,
width,
image_embeddings,
generator,
determineTrain,
to_replace_latents,
do_classifier_free_guidance,
image_latents,
added_time_ids,
latents=None,
):
# 6. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 7. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_frames,
num_channels_latents,
height,
width,
image_embeddings.dtype,
device,
generator,
latents,
)
if determineTrain:
latents[...] = 0.
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# replace part of latents with conditons. ToDo: t embedding should also replace
if to_replace_latents is not None:
num_img_condition = to_replace_latents.shape[1]
if not determineTrain:
_noise = randn_tensor(to_replace_latents.shape, generator=generator, device=device, dtype=image_embeddings.dtype)
noisy_to_replace_latents = self.scheduler.add_noise(to_replace_latents, _noise, t.unsqueeze(0))
latents[:, :num_img_condition] = noisy_to_replace_latents
else:
latents[:, :num_img_condition] = to_replace_latents
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
timestep = t
# Concatenate image_latents over channels dimention
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=image_embeddings,
added_time_ids=added_time_ids,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
scheduler_output = self.scheduler.step(noise_pred, t, latents)
latents = scheduler_output.prev_sample
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
return latents
# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out