Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,399 Bytes
fc13e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import math
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
from diffusers import DiffusionPipeline
from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion import StableVideoDiffusionPipelineOutput, StableVideoDiffusionPipeline
from PIL import Image
import cv2
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class NormalCrafterPipeline(StableVideoDiffusionPipeline):
def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance, scale=1, image_size=None):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.video_processor.pil_to_numpy(image) # (0, 255) -> (0, 1)
image = self.video_processor.numpy_to_pt(image) # (n, h, w, c) -> (n, c, h, w)
# We normalize the image before resizing to match with the original implementation.
# Then we unnormalize it after resizing.
pixel_values = image
B, C, H, W = pixel_values.shape
patches = [pixel_values]
# patches = []
for i in range(1, scale):
num_patches_HW_this_level = i + 1
patch_H = H // num_patches_HW_this_level + 1
patch_W = W // num_patches_HW_this_level + 1
for j in range(num_patches_HW_this_level):
for k in range(num_patches_HW_this_level):
patches.append(pixel_values[:, :, j*patch_H:(j+1)*patch_H, k*patch_W:(k+1)*patch_W])
def encode_image(image):
image = image * 2.0 - 1.0
if image_size is not None:
image = _resize_with_antialiasing(image, image_size)
else:
image = _resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
# Normalize the image with for CLIP input
image = self.feature_extractor(
images=image,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
if len(image_embeddings.shape) < 3:
image_embeddings = image_embeddings.unsqueeze(1)
return image_embeddings
image_embeddings = []
for patch in patches:
image_embeddings.append(encode_image(patch))
image_embeddings = torch.cat(image_embeddings, dim=1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
# import pdb
# pdb.set_trace()
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
negative_image_embeddings = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
return image_embeddings
def ecnode_video_vae(self, images, chunk_size: int = 14):
if isinstance(images, list):
width, height = images[0].size
else:
height, width = images[0].shape[:2]
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float32)
device = self._execution_device
images = self.video_processor.preprocess_video(images, height=height, width=width).to(device, self.vae.dtype) # torch type in range(-1, 1) with (1,3,h,w)
images = images.squeeze(0) # from (1, c, t, h, w) -> (c, t, h, w)
images = images.permute(1,0,2,3) # c, t, h, w -> (t, c, h, w)
video_latents = []
# chunk_size = 14
for i in range(0, images.shape[0], chunk_size):
video_latents.append(self.vae.encode(images[i : i + chunk_size]).latent_dist.mode())
image_latents = torch.cat(video_latents)
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
return image_latents
def pad_image(self, images, scale=64):
def get_pad(newW, W):
pad_W = (newW - W) // 2
if W % 2 == 1:
pad_Ws = [pad_W, pad_W + 1]
else:
pad_Ws = [pad_W, pad_W]
return pad_Ws
if type(images[0]) is np.ndarray:
H, W = images[0].shape[:2]
else:
W, H = images[0].size
if W % scale == 0 and H % scale == 0:
return images, None
newW = int(np.ceil(W / scale) * scale)
newH = int(np.ceil(H / scale) * scale)
pad_Ws = get_pad(newW, W)
pad_Hs = get_pad(newH, H)
new_images = []
for image in images:
if type(image) is np.ndarray:
image = cv2.copyMakeBorder(image, *pad_Hs, *pad_Ws, cv2.BORDER_CONSTANT, value=(1.,1.,1.))
new_images.append(image)
else:
image = np.array(image)
image = cv2.copyMakeBorder(image, *pad_Hs, *pad_Ws, cv2.BORDER_CONSTANT, value=(255,255,255))
new_images.append(Image.fromarray(image))
return new_images, pad_Hs+pad_Ws
def unpad_image(self, v, pad_HWs):
t, b, l, r = pad_HWs
if t > 0 or b > 0:
v = v[:, :, t:-b]
if l > 0 or r > 0:
v = v[:, :, :, l:-r]
return v
@torch.no_grad()
def __call__(
self,
images: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
decode_chunk_size: Optional[int] = None,
time_step_size: Optional[int] = 1,
window_size: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
return_dict: bool = True
):
images, pad_HWs = self.pad_image(images)
# 0. Default height and width to unet
width, height = images[0].size
num_frames = len(images)
# 1. Check inputs. Raise error if not correct
self.check_inputs(images, height, width)
# 2. Define call parameters
batch_size = 1
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
self._guidance_scale = 1.0
num_videos_per_prompt = 1
do_classifier_free_guidance = False
num_inference_steps = 1
fps = 7
motion_bucket_id = 127
noise_aug_strength = 0.
num_videos_per_prompt = 1
output_type = "np"
data_keys = ["normal"]
use_linear_merge = True
determineTrain = True
encode_image_scale = 1
encode_image_WH = None
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else 7
# 3. Encode input image using using clip. (num_image * num_videos_per_prompt, 1, 1024)
image_embeddings = self._encode_image(images, device, num_videos_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, scale=encode_image_scale, image_size=encode_image_WH)
# 4. Encode input image using VAE
image_latents = self.ecnode_video_vae(images, chunk_size=decode_chunk_size).to(image_embeddings.dtype)
# image_latents [num_frames, channels, height, width] ->[1, num_frames, channels, height, width]
image_latents = image_latents.unsqueeze(0)
# 5. Get Added Time IDs
added_time_ids = self._get_add_time_ids(
fps,
motion_bucket_id,
noise_aug_strength,
image_embeddings.dtype,
batch_size,
num_videos_per_prompt,
do_classifier_free_guidance,
)
added_time_ids = added_time_ids.to(device)
# get Start and End frame idx for each window
def get_ses(num_frames):
ses = []
for i in range(0, num_frames, time_step_size):
ses.append([i, i+window_size])
num_to_remain = 0
for se in ses:
if se[1] > num_frames:
continue
num_to_remain += 1
ses = ses[:num_to_remain]
if ses[-1][-1] < num_frames:
ses.append([num_frames - window_size, num_frames])
return ses
ses = get_ses(num_frames)
pred = None
for i, se in enumerate(ses):
window_num_frames = window_size
window_image_embeddings = image_embeddings[se[0]:se[1]]
window_image_latents = image_latents[:, se[0]:se[1]]
window_added_time_ids = added_time_ids
# import pdb
# pdb.set_trace()
if i == 0 or time_step_size == window_size:
to_replace_latents = None
else:
last_se = ses[i-1]
num_to_replace_latents = last_se[1] - se[0]
to_replace_latents = pred[:, -num_to_replace_latents:]
latents = self.generate(
num_inference_steps,
device,
batch_size,
num_videos_per_prompt,
window_num_frames,
height,
width,
window_image_embeddings,
generator,
determineTrain,
to_replace_latents,
do_classifier_free_guidance,
window_image_latents,
window_added_time_ids
)
# merge last_latents and current latents in overlap window
if to_replace_latents is not None and use_linear_merge:
num_img_condition = to_replace_latents.shape[1]
weight = torch.linspace(1., 0., num_img_condition+2)[1:-1].to(device)
weight = weight[None, :, None, None, None]
latents[:, :num_img_condition] = to_replace_latents * weight + latents[:, :num_img_condition] * (1 - weight)
if pred is None:
pred = latents
else:
pred = torch.cat([pred[:, :se[0]], latents], dim=1)
if not output_type == "latent":
# cast back to fp16 if needed
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# latents has shape (1, num_frames, 12, h, w)
def decode_latents(latents, num_frames, decode_chunk_size):
frames = self.decode_latents(latents, num_frames, decode_chunk_size) # in range(-1, 1)
frames = self.video_processor.postprocess_video(video=frames, output_type="np")
frames = frames * 2 - 1 # from range(0, 1) -> range(-1, 1)
return frames
frames = decode_latents(pred, num_frames, decode_chunk_size)
if pad_HWs is not None:
frames = self.unpad_image(frames, pad_HWs)
else:
frames = pred
self.maybe_free_model_hooks()
if not return_dict:
return frames
return StableVideoDiffusionPipelineOutput(frames=frames)
def generate(
self,
num_inference_steps,
device,
batch_size,
num_videos_per_prompt,
num_frames,
height,
width,
image_embeddings,
generator,
determineTrain,
to_replace_latents,
do_classifier_free_guidance,
image_latents,
added_time_ids,
latents=None,
):
# 6. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 7. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_frames,
num_channels_latents,
height,
width,
image_embeddings.dtype,
device,
generator,
latents,
)
if determineTrain:
latents[...] = 0.
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# replace part of latents with conditons. ToDo: t embedding should also replace
if to_replace_latents is not None:
num_img_condition = to_replace_latents.shape[1]
if not determineTrain:
_noise = randn_tensor(to_replace_latents.shape, generator=generator, device=device, dtype=image_embeddings.dtype)
noisy_to_replace_latents = self.scheduler.add_noise(to_replace_latents, _noise, t.unsqueeze(0))
latents[:, :num_img_condition] = noisy_to_replace_latents
else:
latents[:, :num_img_condition] = to_replace_latents
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
timestep = t
# Concatenate image_latents over channels dimention
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=image_embeddings,
added_time_ids=added_time_ids,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
scheduler_output = self.scheduler.step(noise_pred, t, latents)
latents = scheduler_output.prev_sample
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
return latents
# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out
|