File size: 19,399 Bytes
fc13e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import math

from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
from diffusers import DiffusionPipeline
from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion import StableVideoDiffusionPipelineOutput, StableVideoDiffusionPipeline
from PIL import Image
import cv2

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

class NormalCrafterPipeline(StableVideoDiffusionPipeline):

    def _encode_image(self, image, device, num_videos_per_prompt, do_classifier_free_guidance, scale=1, image_size=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.video_processor.pil_to_numpy(image) # (0, 255) -> (0, 1)
            image = self.video_processor.numpy_to_pt(image) # (n, h, w, c) -> (n, c, h, w)

            # We normalize the image before resizing to match with the original implementation.
            # Then we unnormalize it after resizing.
            pixel_values = image
            B, C, H, W = pixel_values.shape
            patches = [pixel_values]
            # patches = []
            for i in range(1, scale):
                num_patches_HW_this_level = i + 1
                patch_H = H // num_patches_HW_this_level + 1
                patch_W = W // num_patches_HW_this_level + 1
                for j in range(num_patches_HW_this_level):
                    for k in range(num_patches_HW_this_level):
                        patches.append(pixel_values[:, :, j*patch_H:(j+1)*patch_H, k*patch_W:(k+1)*patch_W])
            
            def encode_image(image):
                image = image * 2.0 - 1.0
                if image_size is not None:
                    image = _resize_with_antialiasing(image, image_size)
                else:
                    image = _resize_with_antialiasing(image, (224, 224))
                image = (image + 1.0) / 2.0

                # Normalize the image with for CLIP input
                image = self.feature_extractor(
                    images=image,
                    do_normalize=True,
                    do_center_crop=False,
                    do_resize=False,
                    do_rescale=False,
                    return_tensors="pt",
                ).pixel_values

                image = image.to(device=device, dtype=dtype)
                image_embeddings = self.image_encoder(image).image_embeds
                if len(image_embeddings.shape) < 3:
                    image_embeddings = image_embeddings.unsqueeze(1)
                return image_embeddings

            image_embeddings = []
            for patch in patches:
                image_embeddings.append(encode_image(patch))
            image_embeddings = torch.cat(image_embeddings, dim=1)    
        
        # duplicate image embeddings for each generation per prompt, using mps friendly method
        # import pdb
        # pdb.set_trace()
        bs_embed, seq_len, _ = image_embeddings.shape
        image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
        image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            negative_image_embeddings = torch.zeros_like(image_embeddings)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])

        return image_embeddings

    def ecnode_video_vae(self, images, chunk_size: int = 14):
        if isinstance(images, list):
            width, height = images[0].size
        else:
            height, width = images[0].shape[:2]
        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
        if needs_upcasting:
            self.vae.to(dtype=torch.float32)

        device = self._execution_device
        images = self.video_processor.preprocess_video(images, height=height, width=width).to(device, self.vae.dtype) # torch type in range(-1, 1) with (1,3,h,w)
        images = images.squeeze(0) # from (1, c, t, h, w) -> (c, t, h, w)
        images = images.permute(1,0,2,3) # c, t, h, w -> (t, c, h, w)

        video_latents = []
        # chunk_size = 14
        for i in range(0, images.shape[0], chunk_size):                
            video_latents.append(self.vae.encode(images[i : i + chunk_size]).latent_dist.mode())
        image_latents = torch.cat(video_latents)

        # cast back to fp16 if needed
        if needs_upcasting:
            self.vae.to(dtype=torch.float16)

        return image_latents

    def pad_image(self, images, scale=64):
        def get_pad(newW, W):
            pad_W = (newW - W) // 2
            if W % 2 == 1:
                pad_Ws = [pad_W, pad_W + 1]
            else:
                pad_Ws = [pad_W, pad_W]
            return pad_Ws

        if type(images[0]) is np.ndarray:
            H, W = images[0].shape[:2]
        else:
            W, H = images[0].size

        if W % scale == 0 and H % scale == 0:
            return images, None
        newW = int(np.ceil(W / scale) * scale)
        newH = int(np.ceil(H / scale) * scale)

        pad_Ws = get_pad(newW, W)
        pad_Hs = get_pad(newH, H)
        
        new_images = []
        for image in images:
            if type(image) is np.ndarray:
                image = cv2.copyMakeBorder(image, *pad_Hs, *pad_Ws, cv2.BORDER_CONSTANT, value=(1.,1.,1.))
                new_images.append(image)
            else:
                image = np.array(image)
                image = cv2.copyMakeBorder(image, *pad_Hs, *pad_Ws, cv2.BORDER_CONSTANT, value=(255,255,255))
                new_images.append(Image.fromarray(image))
        return new_images, pad_Hs+pad_Ws
    
    def unpad_image(self, v, pad_HWs):
        t, b, l, r = pad_HWs
        if t > 0 or b > 0:
            v = v[:, :, t:-b]
        if l > 0 or r > 0:
            v = v[:, :, :, l:-r]
        return v
    
    @torch.no_grad()
    def __call__(
        self,
        images: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
        decode_chunk_size: Optional[int] = None,
        time_step_size: Optional[int] = 1,
        window_size: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        return_dict: bool = True
    ):
        images, pad_HWs = self.pad_image(images)
        
        # 0. Default height and width to unet
        width, height = images[0].size
        num_frames = len(images)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(images, height, width)

        # 2. Define call parameters
        batch_size = 1
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        self._guidance_scale = 1.0
        num_videos_per_prompt = 1
        do_classifier_free_guidance = False
        num_inference_steps = 1
        fps = 7
        motion_bucket_id = 127
        noise_aug_strength = 0.
        num_videos_per_prompt = 1
        output_type = "np"
        data_keys = ["normal"]
        use_linear_merge = True
        determineTrain = True
        encode_image_scale = 1
        encode_image_WH = None

        decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else 7

        # 3. Encode input image using using clip. (num_image * num_videos_per_prompt, 1, 1024)
        image_embeddings = self._encode_image(images, device, num_videos_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, scale=encode_image_scale, image_size=encode_image_WH)
        # 4. Encode input image using VAE
        image_latents = self.ecnode_video_vae(images, chunk_size=decode_chunk_size).to(image_embeddings.dtype)
            
        # image_latents [num_frames, channels, height, width] ->[1, num_frames, channels, height, width]
        image_latents = image_latents.unsqueeze(0)

        # 5. Get Added Time IDs
        added_time_ids = self._get_add_time_ids(
            fps,
            motion_bucket_id,
            noise_aug_strength,
            image_embeddings.dtype,
            batch_size,
            num_videos_per_prompt,
            do_classifier_free_guidance,
        )
        added_time_ids = added_time_ids.to(device)

        # get Start and End frame idx for each window
        def get_ses(num_frames):
            ses = []
            for i in range(0, num_frames, time_step_size):
                ses.append([i, i+window_size])
            num_to_remain = 0
            for se in ses:
                if se[1] > num_frames:
                    continue
                num_to_remain += 1
            ses = ses[:num_to_remain]

            if ses[-1][-1] < num_frames:
                ses.append([num_frames - window_size, num_frames])
            return ses
        ses = get_ses(num_frames)

        pred = None
        for i, se in enumerate(ses):
            window_num_frames = window_size
            window_image_embeddings = image_embeddings[se[0]:se[1]]
            window_image_latents = image_latents[:, se[0]:se[1]]
            window_added_time_ids = added_time_ids
            # import pdb
            # pdb.set_trace()
            if i == 0 or time_step_size == window_size:
                to_replace_latents = None
            else:
                last_se = ses[i-1]
                num_to_replace_latents = last_se[1] - se[0]
                to_replace_latents = pred[:, -num_to_replace_latents:]

            latents = self.generate(
                num_inference_steps,
                device,
                batch_size,
                num_videos_per_prompt,
                window_num_frames,
                height,
                width,
                window_image_embeddings,
                generator,
                determineTrain,
                to_replace_latents,
                do_classifier_free_guidance,
                window_image_latents,
                window_added_time_ids
            )
            
            # merge last_latents and current latents in overlap window
            if to_replace_latents is not None and use_linear_merge:
                num_img_condition = to_replace_latents.shape[1]
                weight = torch.linspace(1., 0., num_img_condition+2)[1:-1].to(device)
                weight = weight[None, :, None, None, None]
                latents[:, :num_img_condition] = to_replace_latents * weight + latents[:, :num_img_condition] * (1 - weight)

            if pred is None:
                pred = latents
            else:
                pred = torch.cat([pred[:, :se[0]], latents], dim=1)

        if not output_type == "latent":
            # cast back to fp16 if needed
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
            # latents has shape (1, num_frames, 12, h, w)

            def decode_latents(latents, num_frames, decode_chunk_size):
                frames = self.decode_latents(latents, num_frames, decode_chunk_size) # in range(-1, 1)
                frames = self.video_processor.postprocess_video(video=frames, output_type="np")
                frames = frames * 2 - 1 # from range(0, 1) -> range(-1, 1)
                return frames
            
            frames = decode_latents(pred, num_frames, decode_chunk_size)
            if pad_HWs is not None:
                frames = self.unpad_image(frames, pad_HWs)
        else:
            frames = pred

        self.maybe_free_model_hooks()

        if not return_dict:
            return frames

        return StableVideoDiffusionPipelineOutput(frames=frames)


    def generate(
            self, 
            num_inference_steps,
            device,
            batch_size,
            num_videos_per_prompt,
            num_frames,
            height,
            width,
            image_embeddings,
            generator,
            determineTrain,
            to_replace_latents,
            do_classifier_free_guidance,
            image_latents,
            added_time_ids,
            latents=None,
        ):
        # 6. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 7. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_frames,
            num_channels_latents,
            height,
            width,
            image_embeddings.dtype,
            device,
            generator,
            latents,
        )
        if determineTrain:
            latents[...] = 0.

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # replace part of latents with conditons. ToDo: t embedding should also replace
                if to_replace_latents is not None:
                    num_img_condition = to_replace_latents.shape[1]
                    if not determineTrain:
                        _noise = randn_tensor(to_replace_latents.shape, generator=generator, device=device, dtype=image_embeddings.dtype)
                        noisy_to_replace_latents = self.scheduler.add_noise(to_replace_latents, _noise, t.unsqueeze(0))
                        latents[:, :num_img_condition] = noisy_to_replace_latents
                    else:
                        latents[:, :num_img_condition] = to_replace_latents
                    

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                timestep = t
                # Concatenate image_latents over channels dimention
                latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    timestep,
                    encoder_hidden_states=image_embeddings,
                    added_time_ids=added_time_ids,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                scheduler_output = self.scheduler.step(noise_pred, t, latents)
                latents = scheduler_output.prev_sample

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        return latents 
# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
    h, w = input.shape[-2:]
    factors = (h / size[0], w / size[1])

    # First, we have to determine sigma
    # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
    sigmas = (
        max((factors[0] - 1.0) / 2.0, 0.001),
        max((factors[1] - 1.0) / 2.0, 0.001),
    )

    # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
    # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
    # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
    ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))

    # Make sure it is odd
    if (ks[0] % 2) == 0:
        ks = ks[0] + 1, ks[1]

    if (ks[1] % 2) == 0:
        ks = ks[0], ks[1] + 1

    input = _gaussian_blur2d(input, ks, sigmas)

    output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
    return output


def _compute_padding(kernel_size):
    """Compute padding tuple."""
    # 4 or 6 ints:  (padding_left, padding_right,padding_top,padding_bottom)
    # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
    if len(kernel_size) < 2:
        raise AssertionError(kernel_size)
    computed = [k - 1 for k in kernel_size]

    # for even kernels we need to do asymmetric padding :(
    out_padding = 2 * len(kernel_size) * [0]

    for i in range(len(kernel_size)):
        computed_tmp = computed[-(i + 1)]

        pad_front = computed_tmp // 2
        pad_rear = computed_tmp - pad_front

        out_padding[2 * i + 0] = pad_front
        out_padding[2 * i + 1] = pad_rear

    return out_padding


def _filter2d(input, kernel):
    # prepare kernel
    b, c, h, w = input.shape
    tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)

    tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)

    height, width = tmp_kernel.shape[-2:]

    padding_shape: list[int] = _compute_padding([height, width])
    input = torch.nn.functional.pad(input, padding_shape, mode="reflect")

    # kernel and input tensor reshape to align element-wise or batch-wise params
    tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
    input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))

    # convolve the tensor with the kernel.
    output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)

    out = output.view(b, c, h, w)
    return out


def _gaussian(window_size: int, sigma):
    if isinstance(sigma, float):
        sigma = torch.tensor([[sigma]])

    batch_size = sigma.shape[0]

    x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)

    if window_size % 2 == 0:
        x = x + 0.5

    gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))

    return gauss / gauss.sum(-1, keepdim=True)


def _gaussian_blur2d(input, kernel_size, sigma):
    if isinstance(sigma, tuple):
        sigma = torch.tensor([sigma], dtype=input.dtype)
    else:
        sigma = sigma.to(dtype=input.dtype)

    ky, kx = int(kernel_size[0]), int(kernel_size[1])
    bs = sigma.shape[0]
    kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
    kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
    out_x = _filter2d(input, kernel_x[..., None, :])
    out = _filter2d(out_x, kernel_y[..., None])

    return out