File size: 5,633 Bytes
fc13e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gc
import os
import numpy as np
import torch

from diffusers.training_utils import set_seed
from diffusers import AutoencoderKLTemporalDecoder
from fire import Fire

from normalcrafter.normal_crafter_ppl import NormalCrafterPipeline
from normalcrafter.unet import DiffusersUNetSpatioTemporalConditionModelNormalCrafter
from normalcrafter.utils import vis_sequence_normal, save_video, read_video_frames


class DepthCrafterDemo:
    def __init__(
        self,
        unet_path: str,
        pre_train_path: str,
        cpu_offload: str = "model",
    ):
        unet = DiffusersUNetSpatioTemporalConditionModelNormalCrafter.from_pretrained(
            unet_path,
            subfolder="unet",
            low_cpu_mem_usage=True,
        )
        vae = AutoencoderKLTemporalDecoder.from_pretrained(
            unet_path, subfolder="vae"
        )
        weight_dtype = torch.float16
        vae.to(dtype=weight_dtype)
        unet.to(dtype=weight_dtype)
        # load weights of other components from the provided checkpoint
        self.pipe = NormalCrafterPipeline.from_pretrained(
            pre_train_path,
            unet=unet,
            vae=vae,
            torch_dtype=weight_dtype,
            variant="fp16",
        )

        # for saving memory, we can offload the model to CPU, or even run the model sequentially to save more memory
        if cpu_offload is not None:
            if cpu_offload == "sequential":
                # This will slow, but save more memory
                self.pipe.enable_sequential_cpu_offload()
            elif cpu_offload == "model":
                self.pipe.enable_model_cpu_offload()
            else:
                raise ValueError(f"Unknown cpu offload option: {cpu_offload}")
        else:
            self.pipe.to("cuda")
        # enable attention slicing and xformers memory efficient attention
        try:
            self.pipe.enable_xformers_memory_efficient_attention()
        except Exception as e:
            print(e)
            print("Xformers is not enabled")
        # self.pipe.enable_attention_slicing()

    def infer(
        self,
        video: str,
        save_folder: str = "./demo_output",
        window_size: int = 14,
        time_step_size: int = 10,
        process_length: int = 195,
        decode_chunk_size: int = 7,
        max_res: int = 1024,
        dataset: str = "open",
        target_fps: int = 15,
        seed: int = 42,
        save_npz: bool = False,
    ):
        set_seed(seed)

        frames, target_fps = read_video_frames(
            video,
            process_length,
            target_fps,
            max_res,
        )
        # inference the depth map using the DepthCrafter pipeline
        with torch.inference_mode():
            res = self.pipe(
                frames,
                decode_chunk_size=decode_chunk_size,
                time_step_size=time_step_size,
                window_size=window_size,
            ).frames[0]
        # visualize the depth map and save the results
        vis = vis_sequence_normal(res)
        # save the depth map and visualization with the target FPS
        save_path = os.path.join(
            save_folder, os.path.splitext(os.path.basename(video))[0]
        )
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        save_video(vis, save_path + "_vis.mp4", fps=target_fps)
        save_video(frames, save_path + "_input.mp4", fps=target_fps)
        if save_npz:
            np.savez_compressed(save_path + ".npz", depth=res)

        return [
            save_path + "_input.mp4",
            save_path + "_vis.mp4",
        ]

    def run(
        self,
        input_video,
        num_denoising_steps,
        guidance_scale,
        max_res=1024,
        process_length=195,
    ):
        res_path = self.infer(
            input_video,
            num_denoising_steps,
            guidance_scale,
            max_res=max_res,
            process_length=process_length,
        )
        # clear the cache for the next video
        gc.collect()
        torch.cuda.empty_cache()
        return res_path[:2]


def main(
    video_path: str,
    save_folder: str = "./demo_output",
    unet_path: str = "Yanrui95/NormalCrafter",
    pre_train_path: str = "stabilityai/stable-video-diffusion-img2vid-xt",
    process_length: int = -1,
    cpu_offload: str = "model",
    target_fps: int = -1,
    seed: int = 42,
    window_size: int = 14,
    time_step_size: int = 10,
    max_res: int = 1024,
    dataset: str = "open",
    save_npz: bool = False
):
    depthcrafter_demo = DepthCrafterDemo(
        unet_path=unet_path,
        pre_train_path=pre_train_path,
        cpu_offload=cpu_offload,
    )
    # process the videos, the video paths are separated by comma
    video_paths = video_path.split(",")
    for video in video_paths:
        depthcrafter_demo.infer(
            video,
            save_folder=save_folder,
            window_size=window_size,
            process_length=process_length,
            time_step_size=time_step_size,
            max_res=max_res,
            dataset=dataset,
            target_fps=target_fps,
            seed=seed,
            save_npz=save_npz,
        )
        # clear the cache for the next video
        gc.collect()
        torch.cuda.empty_cache()


if __name__ == "__main__":
    # running configs
    # the most important arguments for memory saving are `cpu_offload`, `enable_xformers`, `max_res`, and `window_size`
    # the most important arguments for trade-off between quality and speed are
    # `num_inference_steps`, `guidance_scale`, and `max_res`
    Fire(main)