File size: 7,316 Bytes
fc13e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da357b6
 
fc13e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gc
import os

import numpy as np
import spaces
import gradio as gr
import torch
from diffusers.training_utils import set_seed
from diffusers import AutoencoderKLTemporalDecoder

from normalcrafter.normal_crafter_ppl import NormalCrafterPipeline
from normalcrafter.unet import DiffusersUNetSpatioTemporalConditionModelNormalCrafter

import uuid
import random
from huggingface_hub import hf_hub_download

from normalcrafter.utils import read_video_frames, vis_sequence_normal, save_video

examples = [
    ["examples/example_01.mp4", 1024, -1, -1],
    ["examples/example_02.mp4", 1024, -1, -1],
    ["examples/example_03.mp4", 1024, -1, -1],
    ["examples/example_04.mp4", 1024, -1, -1],
    ["examples/example_05.mp4", 1024, -1, -1],
    ["examples/example_06.mp4", 1024, -1, -1],
]

pretrained_model_name_or_path = "Yanrui95/NormalCrafter"
weight_dtype = torch.float16
unet = DiffusersUNetSpatioTemporalConditionModelNormalCrafter.from_pretrained(
    pretrained_model_name_or_path,
    subfolder="unet",
    low_cpu_mem_usage=True,
)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
        pretrained_model_name_or_path, subfolder="vae")

vae.to(dtype=weight_dtype)
unet.to(dtype=weight_dtype)

pipe = NormalCrafterPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid-xt",
    unet=unet,
    vae=vae,
    torch_dtype=weight_dtype,
    variant="fp16",
)
pipe.to("cuda")


@spaces.GPU(duration=120)
def infer_depth(
    video: str,
    max_res: int = 1024,
    process_length: int = -1,
    target_fps: int = -1,
    #
    save_folder: str = "./demo_output",
    window_size: int = 14,
    time_step_size: int = 10,
    decode_chunk_size: int = 7,
    seed: int = 42,
    save_npz: bool = False,
):
    set_seed(seed)
    pipe.enable_xformers_memory_efficient_attention()

    frames, target_fps = read_video_frames(video, process_length, target_fps, max_res)

    # inference the depth map using the DepthCrafter pipeline
    with torch.inference_mode():
        res = pipe(
            frames,
            decode_chunk_size=decode_chunk_size,
            time_step_size=time_step_size,
            window_size=window_size,
        ).frames[0]
    
    # visualize the depth map and save the results
    vis = vis_sequence_normal(res)
    # save the depth map and visualization with the target FPS
    save_path = os.path.join(save_folder, os.path.splitext(os.path.basename(video))[0])
    print(f"==> saving results to {save_path}")
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    if save_npz:
        np.savez_compressed(save_path + ".npz", normal=res)
    save_video(vis, save_path + "_vis.mp4", fps=target_fps)
    save_video(frames, save_path + "_input.mp4", fps=target_fps)

    # clear the cache for the next video
    gc.collect()
    torch.cuda.empty_cache()

    return [
        save_path + "_input.mp4",
        save_path + "_vis.mp4",

    ]


def construct_demo():
    with gr.Blocks(analytics_enabled=False) as depthcrafter_iface:
        gr.Markdown(
            """
            <div align='center'> <h1> NormalCrafter: Learning Temporally Consistent Video Normal from Video Diffusion Priors </span> </h1> \
                    <a style='font-size:18px;color: #000000'>If you find NormalCrafter useful, please help ⭐ the </a>\
                    <a style='font-size:18px;color: #FF5DB0' href='https://github.com/Binyr/NormalCrafter'>[Github Repo]</a>\
                    <a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
                        <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/xxx'> [ArXiv] </a>\
                        <a style='font-size:18px;color: #000000' href='https://binyr.github.io/NormalCrafter/'> [Project Page] </a> </div>
            """
        )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_video = gr.Video(label="Input Video")

            # with gr.Tab(label="Output"):
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    output_video_1 = gr.Video(
                        label="Preprocessed video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )
                    output_video_2 = gr.Video(
                        label="Generated Depth Video",
                        interactive=False,
                        autoplay=True,
                        loop=True,
                        show_share_button=True,
                        scale=5,
                    )

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Row(equal_height=False):
                    with gr.Accordion("Advanced Settings", open=False):
                        max_res = gr.Slider(
                            label="max resolution",
                            minimum=512,
                            maximum=1024,
                            value=1024,
                            step=64,
                        )
                        process_length = gr.Slider(
                            label="process length",
                            minimum=-1,
                            maximum=280,
                            value=60,
                            step=1,
                        )
                        process_target_fps = gr.Slider(
                            label="target FPS",
                            minimum=-1,
                            maximum=30,
                            value=15,
                            step=1,
                        )
                    generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass

        gr.Examples(
            examples=examples,
            inputs=[
                input_video,
                max_res,
                process_length,
                process_target_fps,
            ],
            outputs=[output_video_1, output_video_2],
            fn=infer_depth,
            cache_examples="lazy",
        )
        # gr.Markdown(
        #     """
        #     <span style='font-size:18px;color: #E7CCCC'>Note: 
        #     For time quota consideration, we set the default parameters to be more efficient here,
        #     with a trade-off of shorter video length and slightly lower quality.
        #     You may adjust the parameters according to our 
        #     <a style='font-size:18px;color: #FF5DB0' href='https://github.com/Tencent/DepthCrafter'>[Github Repo]</a>
        #      for better results if you have enough time quota.
        #     </span>
        #     """
        # )

        generate_btn.click(
            fn=infer_depth,
            inputs=[
                input_video,
                max_res,
                process_length,
                process_target_fps,
            ],
            outputs=[output_video_1, output_video_2],
        )

    return depthcrafter_iface


if __name__ == "__main__":
    demo = construct_demo()
    demo.queue()
    # demo.launch(server_name="0.0.0.0", server_port=12345, debug=True, share=False)
    demo.launch(share=True)