Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,316 Bytes
fc13e66 da357b6 fc13e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gc
import os
import numpy as np
import spaces
import gradio as gr
import torch
from diffusers.training_utils import set_seed
from diffusers import AutoencoderKLTemporalDecoder
from normalcrafter.normal_crafter_ppl import NormalCrafterPipeline
from normalcrafter.unet import DiffusersUNetSpatioTemporalConditionModelNormalCrafter
import uuid
import random
from huggingface_hub import hf_hub_download
from normalcrafter.utils import read_video_frames, vis_sequence_normal, save_video
examples = [
["examples/example_01.mp4", 1024, -1, -1],
["examples/example_02.mp4", 1024, -1, -1],
["examples/example_03.mp4", 1024, -1, -1],
["examples/example_04.mp4", 1024, -1, -1],
["examples/example_05.mp4", 1024, -1, -1],
["examples/example_06.mp4", 1024, -1, -1],
]
pretrained_model_name_or_path = "Yanrui95/NormalCrafter"
weight_dtype = torch.float16
unet = DiffusersUNetSpatioTemporalConditionModelNormalCrafter.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
low_cpu_mem_usage=True,
)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
pretrained_model_name_or_path, subfolder="vae")
vae.to(dtype=weight_dtype)
unet.to(dtype=weight_dtype)
pipe = NormalCrafterPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
unet=unet,
vae=vae,
torch_dtype=weight_dtype,
variant="fp16",
)
pipe.to("cuda")
@spaces.GPU(duration=120)
def infer_depth(
video: str,
max_res: int = 1024,
process_length: int = -1,
target_fps: int = -1,
#
save_folder: str = "./demo_output",
window_size: int = 14,
time_step_size: int = 10,
decode_chunk_size: int = 7,
seed: int = 42,
save_npz: bool = False,
):
set_seed(seed)
pipe.enable_xformers_memory_efficient_attention()
frames, target_fps = read_video_frames(video, process_length, target_fps, max_res)
# inference the depth map using the DepthCrafter pipeline
with torch.inference_mode():
res = pipe(
frames,
decode_chunk_size=decode_chunk_size,
time_step_size=time_step_size,
window_size=window_size,
).frames[0]
# visualize the depth map and save the results
vis = vis_sequence_normal(res)
# save the depth map and visualization with the target FPS
save_path = os.path.join(save_folder, os.path.splitext(os.path.basename(video))[0])
print(f"==> saving results to {save_path}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if save_npz:
np.savez_compressed(save_path + ".npz", normal=res)
save_video(vis, save_path + "_vis.mp4", fps=target_fps)
save_video(frames, save_path + "_input.mp4", fps=target_fps)
# clear the cache for the next video
gc.collect()
torch.cuda.empty_cache()
return [
save_path + "_input.mp4",
save_path + "_vis.mp4",
]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as depthcrafter_iface:
gr.Markdown(
"""
<div align='center'> <h1> NormalCrafter: Learning Temporally Consistent Video Normal from Video Diffusion Priors </span> </h1> \
<a style='font-size:18px;color: #000000'>If you find NormalCrafter useful, please help ⭐ the </a>\
<a style='font-size:18px;color: #FF5DB0' href='https://github.com/Binyr/NormalCrafter'>[Github Repo]</a>\
<a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/xxx'> [ArXiv] </a>\
<a style='font-size:18px;color: #000000' href='https://binyr.github.io/NormalCrafter/'> [Project Page] </a> </div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_video = gr.Video(label="Input Video")
# with gr.Tab(label="Output"):
with gr.Column(scale=2):
with gr.Row(equal_height=True):
output_video_1 = gr.Video(
label="Preprocessed video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
output_video_2 = gr.Video(
label="Generated Depth Video",
interactive=False,
autoplay=True,
loop=True,
show_share_button=True,
scale=5,
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Row(equal_height=False):
with gr.Accordion("Advanced Settings", open=False):
max_res = gr.Slider(
label="max resolution",
minimum=512,
maximum=1024,
value=1024,
step=64,
)
process_length = gr.Slider(
label="process length",
minimum=-1,
maximum=280,
value=60,
step=1,
)
process_target_fps = gr.Slider(
label="target FPS",
minimum=-1,
maximum=30,
value=15,
step=1,
)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[
input_video,
max_res,
process_length,
process_target_fps,
],
outputs=[output_video_1, output_video_2],
fn=infer_depth,
cache_examples="lazy",
)
# gr.Markdown(
# """
# <span style='font-size:18px;color: #E7CCCC'>Note:
# For time quota consideration, we set the default parameters to be more efficient here,
# with a trade-off of shorter video length and slightly lower quality.
# You may adjust the parameters according to our
# <a style='font-size:18px;color: #FF5DB0' href='https://github.com/Tencent/DepthCrafter'>[Github Repo]</a>
# for better results if you have enough time quota.
# </span>
# """
# )
generate_btn.click(
fn=infer_depth,
inputs=[
input_video,
max_res,
process_length,
process_target_fps,
],
outputs=[output_video_1, output_video_2],
)
return depthcrafter_iface
if __name__ == "__main__":
demo = construct_demo()
demo.queue()
# demo.launch(server_name="0.0.0.0", server_port=12345, debug=True, share=False)
demo.launch(share=True)
|