File size: 4,775 Bytes
e29f761
ea1af87
 
e29f761
ea1af87
e29f761
ea1af87
e29f761
ea1af87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import os
import json

from youtube_transcript_api import YouTubeTranscriptApi

from openai import OpenAI

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def gradio_video_id_to_transcript(video_id):

    transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=["en"])
    transcript_formatted = [{'start': entry['start'], 'text': entry['text']} for entry in transcript[0:10]]
    transcript_formatted_str = json.dumps(transcript_formatted, indent=2)+'...'

    return {output_transcript: transcript_formatted_str,
            gv_transcript: transcript}

def gradio_transcript_to_paragraphs(gv_transcript_value):

    paragraphs, nb_input_tokens, nb_output_tokens, price = \
        transcript_to_paragraphs(gv_transcript_value, openai_client, openai_model, chunk_size=5000)

    paragraphs_formatted_str = json.dumps(paragraphs[0:4], indent=2)+'...'

    return {output_paragraphs: paragraphs_formatted_str,
            gv_paragraphs: paragraphs}

def gradio_paragraphs_to_toc(gv_paragraphs_value):

    paragraphs_dict = gv_paragraphs_value

    json_toc, nb_input_tokens, nb_output_tokens, price = \
      paragraphs_to_toc(paragraphs_dict, openai_client, openai_model, chunk_size=100)

    json_toc_formatted_str = json.dumps(json_toc[0:4], indent=2)+'...'

    return {output_toc: json_toc_formatted_str,
            gv_toc: json_toc}


def gradio_get_paragraphs_timestamps(gv_transcript_value, gv_paragraphs_value):

    paragraphs = add_timestamps_to_paragraphs(gv_transcript_value, gv_paragraphs_value, num_words=50)

    paragraphs_formatted_str = json.dumps(paragraphs[0:4], indent=2)+'...'

    return {output_paragraphs_timestamps: paragraphs_formatted_str,
            gv_paragraphs: paragraphs}


def gradio_get_chapters(gv_paragraphs_value, gv_toc_value):

    chapters = get_chapters(gv_paragraphs_value, gv_toc_value)

    chapters_formatted_str = json.dumps(chapters[0:4], indent=2)+'...'

    return {output_chapters: chapters_formatted_str,
            gv_chapters: chapters}


def gradio_get_markdown(gv_chapters_value):

    markdown = chapters_to_markdown(gv_chapters_value)

    return markdown

with gr.Blocks() as app:

    gr.Markdown("## Get transcript")

    gv_transcript = gr.State()
    video_id_input = gr.Textbox(label="Video ID", value = "ErnWZxJovaM")
    get_transcript_button = gr.Button("Get transcript")
    output_transcript = gr.Textbox(label = "Transcript (JSON format - start, text)")

    get_transcript_button.click(gradio_video_id_to_transcript,
                                inputs=[video_id_input],
                                outputs=[output_transcript, gv_transcript])

    gr.Markdown("## Transcript to paragraphs")

    gv_paragraphs = gr.State()
    get_paragraphs_button = gr.Button("Get paragraphs")
    output_paragraphs = gr.Textbox(label = "Paragraphs (JSON format - paragraph_number, paragraph_text)")

    get_paragraphs_button.click(gradio_transcript_to_paragraphs,
                                inputs=[gv_transcript],
                                outputs=[output_paragraphs, gv_paragraphs])

    gr.Markdown("## Get table of content")

    gv_toc = gr.State()
    get_toc_button = gr.Button("Get table of contents")
    output_toc = gr.Textbox(label = "Table of content (JSON format - paragraph_number, title)")

    get_toc_button.click(gradio_paragraphs_to_toc,
                         inputs=[gv_paragraphs],
                         outputs=[output_toc, gv_toc])


    gr.Markdown("## Infer paragraph timestamps with TF-IDF")

    get_timestamps_button = gr.Button("Infer paragraph timestamps")
    output_paragraphs_timestamps = gr.Textbox(label = "Paragraphs (JSON format - paragraph_number, paragraph_text, start)")

    get_timestamps_button.click(gradio_get_paragraphs_timestamps,
                                inputs=[gv_transcript, gv_paragraphs],
                                outputs=[output_paragraphs_timestamps, gv_paragraphs])

    gr.Markdown("## Get chapters")

    gv_chapters = gr.State()
    get_chapters_button = gr.Button("Get chapters")
    output_chapters = gr.Textbox(label = "Chapters (JSON format)")

    get_chapters_button.click(gradio_get_chapters,
                              inputs=[gv_paragraphs, gv_toc],
                              outputs=[output_chapters, gv_chapters])


    gr.Markdown("## Markdown formatting")

    get_markdown_button = gr.Button("Markdown formatting")
    output_markdown = gr.Markdown(label = "Chapters (Markdown format)")

    get_markdown_button.click(gradio_get_markdown,
                              inputs=[gv_chapters],
                              outputs=[output_markdown])


app.launch(debug=True)