Spaces:
Running
Running
File size: 15,454 Bytes
3730a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import json
import re
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
########################### LLM call ###########################
price_token={'gpt-4o': {'input': 5/1000000, 'output': 15/1000000},
'gpt-4o-2024-08-06': {'input': 2.5/1000000, 'output': 10/1000000},
'gpt-4o-mini-2024-07-18': {'input': 0.15/1000000, 'output': 0.6/1000000},
'llama3-8b-8192' : {'input': 0.05 / 1000000, 'output': 0.08 / 1000000},
'llama3-70b-8192' : {'input': 0.59 / 1000000, 'output': 0.79 / 1000000},
'claude-3-5-sonnet-20240620': {'input': 3/1000000, 'output': 15/1000000},
'claude-3-haiku-20240307': {'input': 0.25/1000000, 'output': 1.25/1000000},
}
def call_llm(client, model, system_prompt, prompt,
temperature=0, seed=42, response_format=None, max_tokens=5000):
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": prompt
}
],
model=model,
temperature=temperature,
seed=seed,
response_format=response_format,
max_tokens=max_tokens
)
nb_input_tokens = response.usage.prompt_tokens
nb_output_tokens = response.usage.completion_tokens
price = nb_input_tokens * price_token[model]['input'] + nb_output_tokens * price_token[model]['output']
print(f"input tokens: {nb_input_tokens}; output tokens: {nb_output_tokens}, price: {price}")
response_content=response.choices[0].message.content
return response_content, nb_input_tokens, nb_output_tokens, price
########################### Step 2: Transcript to paragraph ###########################
system_prompt_transcript_to_paragraphs = f"""
You are a helpful assistant.
Your task is to improve the user input's readability: add punctuation if needed, remove verbal tics, correct grammatical errors, and add appropriate line breaks with '\n\n'.
Put your answer within <answer></answer> tags.
"""
def transcript_to_paragraphs(transcript, llm_client, llm_model, chunk_size=5000, progress=None):
transcript_as_text = ' '.join([s['text'] for s in transcript])
paragraphs = []
last_paragraph = ""
total_nb_input_tokens, total_nb_output_tokens, total_price = 0, 0, 0
nb_chunks = int(len(transcript_as_text) / chunk_size) + 1
progress_i = 0
print(f"Number of chunks: {nb_chunks}")
# for i in range(0, 10000, chunk_size):
for i in range(0, len(transcript_as_text), chunk_size):
print("i is: " + str(i))
chunk = last_paragraph + " " + transcript_as_text[i:i + chunk_size]
if progress is not None:
progress_i += 1
progress(progress_i / nb_chunks, desc="Processing")
found_edited_transcript = False
while not found_edited_transcript:
response_content, nb_input_tokens, nb_output_tokens, price = \
call_llm(llm_client, llm_model,
system_prompt=system_prompt_transcript_to_paragraphs, prompt=chunk,
temperature=0.2, seed=42, response_format=None)
if not "</answer>" in response_content:
response_content += "</answer>"
# Extract content from <edited_transcript> tags
pattern = re.compile(r'<answer>(.*?)</answer>', re.DOTALL)
response_content_edited = pattern.findall(response_content)
if len(response_content_edited) > 0:
found_edited_transcript = True
response_content_edited = response_content_edited[0]
else:
print("No edited transcript found. Trying again.")
print(response_content[0:100])
print(response_content[-100:])
total_nb_input_tokens += nb_input_tokens
total_nb_output_tokens += nb_output_tokens
total_price += price
paragraphs_chunk = response_content_edited.strip().split('\n\n')
print('Found paragraphs:', len(paragraphs_chunk))
last_paragraph = paragraphs_chunk[-1]
paragraphs += paragraphs_chunk[:-1]
paragraphs += [last_paragraph]
paragraphs_dict = [{'paragraph_number': i, 'paragraph_text': paragraph} for i, paragraph in enumerate(paragraphs)]
return paragraphs_dict, total_nb_input_tokens, total_nb_output_tokens, total_price
########################### Step 3: Infer timestamps ###########################
def transform_text_segments(text_segments, num_words=50):
# Initialize variables
transformed_segments = []
current_index = 0
num_segments = len(text_segments)
for i in range(num_segments):
current_index = i
# Get the current segment's starting timestamp and text
current_segment = text_segments[current_index]
current_text = current_segment['text']
# Initialize a list to hold the combined text
combined_text = " ".join(current_text.split()[:num_words])
number_words_collected = len(current_text.split())
# Collect words from subsequent segments
while number_words_collected < num_words and (current_index + 1) < num_segments:
current_index += 1
next_segment = text_segments[current_index]
next_text = next_segment['text']
next_words = next_text.split()
# Append words from the next segment
if number_words_collected + len(next_words) <= num_words:
combined_text += ' ' + next_text
number_words_collected += len(next_words)
else:
# Only append enough words to reach the num_words limit
words_needed = num_words - number_words_collected
combined_text += ' ' + ' '.join(next_words[:words_needed])
number_words_collected = num_words
# Append the combined segment to the result
transformed_segments.append(combined_text)
return transformed_segments
def add_timestamps_to_paragraphs(transcript, paragraphs, num_words=50):
list_indices = []
transcript_num_words = transform_text_segments(transcript, num_words=num_words)
paragraphs_start_text = [{"start": p['paragraph_number'], "text": p['paragraph_text']} for p in paragraphs]
paragraphs_num_words = transform_text_segments(paragraphs_start_text, num_words=num_words)
# Create a TF-IDF vectorizer
vectorizer = TfidfVectorizer().fit_transform(transcript_num_words + paragraphs_num_words)
# Get the TF-IDF vectors for the transcript and the excerpt
vectors = vectorizer.toarray()
for i in range(len(paragraphs_num_words)):
# Extract the TF-IDF vector for the paragraph
paragraph_vector = vectors[len(transcript_num_words) + i]
# Calculate the cosine similarity between the paragraph vector and each transcript chunk
similarities = cosine_similarity(vectors[:len(transcript_num_words)], paragraph_vector.reshape(1, -1))
# Find the index of the most similar chunk
best_match_index = int(np.argmax(similarities))
list_indices.append(best_match_index)
paragraphs[i]['matched_index'] = best_match_index
paragraphs[i]['matched_text'] = transcript[best_match_index]['text']
paragraphs[i]['start_time'] = int(transcript[best_match_index]['start']) - 2
if paragraphs[i]['start_time'] < 0:
paragraphs[i]['start_time'] = 0
return paragraphs
########################### Step 4: Generate table of content ###########################
system_prompt_paragraphs_to_toc = """
You are a helpful assistant.
You are given a transcript of a course in JSON format as a list of paragraphs, each containing 'paragraph_number' and 'paragraph_text' keys.
Your task is to group consecutive paragraphs in chapters for the course and identify meaningful chapter titles.
Here are the steps to follow:
1. Read the transcript carefully to understand its general structure and the main topics covered.
2. Look for clues that a new chapter is about to start. This could be a change of topic, a change of time or setting, the introduction of new themes or topics, or the speaker's explicit mention of a new part.
3. For each chapter, keep track of the paragraph number that starts the chapter and identify a meaningful chapter title.
4. Chapters should ideally be equally spaced throughout the transcript, and discuss a specific topic.
5. A chapter MUST have more than 4 paragraphs.
Format your result in JSON, with a list dictionaries for chapters, with 'start_paragraph_number':integer and 'title':string as key:value.
Example:
{"chapters":
[{"start_paragraph_number": 0, "title": "Introduction"},
{"start_paragraph_number": 10, "title": "Chapter 1"}
]
}
"""
def paragraphs_to_toc(paragraphs, llm_client, llm_model, chunk_size=100):
chapters = []
number_last_chapter = 0
total_nb_input_tokens, total_nb_output_tokens, total_price = 0, 0, 0
while number_last_chapter < len(paragraphs):
print(number_last_chapter)
chunk = paragraphs[number_last_chapter:(number_last_chapter + chunk_size)]
chunk = [{'paragraph_number': p['paragraph_number'], 'paragraph_text': p['paragraph_text']} for p in chunk]
chunk_json_dump = json.dumps(chunk)
content, nb_input_tokens, nb_output_tokens, price = call_llm( \
llm_client, llm_model, \
system_prompt_paragraphs_to_toc, chunk_json_dump, \
temperature=0, seed=42, response_format={"type": "json_object"})
total_nb_input_tokens += nb_input_tokens
total_nb_output_tokens += nb_output_tokens
chapters_chunk = json.loads(content)['chapters']
if number_last_chapter == chapters_chunk[-1]['start_paragraph_number']:
break
chapters += chapters_chunk[:-1]
number_last_chapter = chapters_chunk[-1]['start_paragraph_number']
if number_last_chapter >= len(paragraphs) - 5:
break
total_price = (total_nb_input_tokens * price_token[llm_model]['input'] +
total_nb_output_tokens * price_token[llm_model]['output'])
chapters += [chapters_chunk[-1]]
return chapters, total_nb_input_tokens, total_nb_output_tokens, total_price
########################### Step 5: Chapter rendering functions ###########################
def get_chapters(paragraphs, table_of_content):
chapters = []
for i in range(len(table_of_content)):
if i < len(table_of_content) - 1:
chapter = {'num_chapter': i,
'title': table_of_content[i]['title'],
'start_paragraph_number': table_of_content[i]['start_paragraph_number'],
'end_paragraph_number': table_of_content[i + 1]['start_paragraph_number'],
'start_time': paragraphs[table_of_content[i]['start_paragraph_number']]['start_time'],
'end_time': paragraphs[table_of_content[i + 1]['start_paragraph_number']]['start_time'],
}
else:
chapter = {'num_chapter': i,
'title': table_of_content[i]['title'],
'start_paragraph_number': table_of_content[i]['start_paragraph_number'],
'end_paragraph_number': len(paragraphs),
'start_time': paragraphs[table_of_content[i]['start_paragraph_number']]['start_time'],
'end_time': paragraphs[-1]['start_time'],
}
paragraphs_chapter = [paragraphs[j]['paragraph_text'] for j in
range(chapter['start_paragraph_number'], chapter['end_paragraph_number'])]
paragraph_timestamps_chapter = [paragraphs[j]['start_time'] for j in
range(chapter['start_paragraph_number'], chapter['end_paragraph_number'])]
chapter['paragraphs'] = paragraphs_chapter
chapter['paragraph_timestamps'] = paragraph_timestamps_chapter
chapters.append(chapter)
return chapters
def convert_seconds_to_hms(seconds):
# Calculate hours, minutes, and remaining seconds
hours = seconds // 3600
minutes = (seconds % 3600) // 60
remaining_seconds = seconds % 60
# Format the result as HH:MM:SS
return f"{hours:02}:{minutes:02}:{remaining_seconds:02}"
def toc_to_html(chapters):
toc_html = "<h1>Video chapters</h1><p>\n"
for chapter in chapters:
num_chapter = chapter['num_chapter']
title = chapter['title']
from_to = convert_seconds_to_hms(int(chapter['start_time'])) + " - "
toc_html += f"""{from_to}<a href = "#{num_chapter}" >{num_chapter+1} - {title}</a><br>\n"""
return toc_html
def section_to_html(section_json_data):
formatted_section = ""
paragraphs = section_json_data['paragraphs']
paragraphs_timestamp_hms = [convert_seconds_to_hms(int(section_json_data['paragraph_timestamps'][i])) for i in range(len(paragraphs))]
for i, (paragraph, paragraph_timestamp_hms) in enumerate(zip(paragraphs, paragraphs_timestamp_hms)):
formatted_section += f"""
<div class="row mb-4">
<div class="col-md-1">
{paragraph_timestamp_hms}
</div>
<div class="col-md-11">
<p>{paragraph}</p>
</div>
</div>"""
num_section = section_json_data['num_chapter']
from_to = "From "+convert_seconds_to_hms(int(section_json_data['start_time'])) + " to " + convert_seconds_to_hms(
int(section_json_data['end_time']))
title = f"{section_json_data['title']}"
title_link = f"""<div class="transcript-title-icon" " id="{num_section}">{num_section+1} - {title}</div>"""
summary_section = f"""
<h2>{title_link}</h2>
{from_to}
<p>
<div class="summary-section">
<div class="summary-text" >
{formatted_section}
</div>
</div>
"""
return summary_section
def get_result_as_html(chapters, video_id):
video_embed = f"""
<iframe width="100%" height="400" src="https://www.youtube.com/embed/{video_id}" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
"""
toc = toc_to_html(chapters)
edited_transcript = f"""
<h1>Structured transcript</h1>
<p>
"""
for i in range(len(chapters)):
chapter_json_data = chapters[i]
edited_transcript += section_to_html(chapter_json_data)
result_as_html = f"""
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet">
<div class="container mt-4">
<div class="content">
{video_embed}
</div>
<p>
<div class="content">
{toc}
</div>
<p>
<div class="content">
{edited_transcript}
</div>
</div>"""
return result_as_html
def load_json_chapters(video_id):
file_name = f"{video_id}.json"
with open(file_name, 'r') as file:
chapters = json.load(file)
return chapters
|