Spaces:
Running
Running
File size: 9,965 Bytes
46f57ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import pandas as pd
import os
import shutil
import gradio as gr
import utils_data_extraction
import utils_assessment
import importlib
importlib.reload(utils_data_extraction)
importlib.reload(utils_assessment)
"""### Function to load data
Data is loaded from a Roamler Excel file, from a sheet called "output".
- A subset of the Excel file is taken as reference data, and saved in the `outputs` directory as reference_data.csv
- A folder for storing photos is created
A n_rows parameter can be passed to load a subset of the data.
"""
def load_roamler_excel_file(filepath, n_rows=3):
OUTPUT_DIR = 'outputs/'+os.path.basename(filepath)
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
DATA_EXTRACTION_DIR=OUTPUT_DIR+'/data_extraction'
if not os.path.exists(DATA_EXTRACTION_DIR):
os.makedirs(DATA_EXTRACTION_DIR)
df_review = pd.read_excel(filepath, sheet_name='Output')
if n_rows is not None:
df_review = df_review.sample(n=n_rows, random_state=42)
df_products = df_review[['ID', 'Front photo', 'Nutritionals photo', 'Ingredients photo', 'EAN photo',
'Brand', 'Product name', 'Legal name', 'Barcode',
'Energy kJ', 'Energy kcal', 'Fat', 'Saturated fat', 'Carbohydrates', 'Sugars', 'Fibers', 'Proteins', 'Salt', 'Ingredients',
'Nutriscore','Allergens',
'Quantity per unit']].copy()
df_products.to_csv(f'{OUTPUT_DIR}/data_extraction/reference_data.csv', index=False)
PHOTO_DIR=OUTPUT_DIR+'/photos'
if not os.path.exists(PHOTO_DIR):
os.makedirs(PHOTO_DIR)
df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data = load_df_from_folder(OUTPUT_DIR)
return df_products, OUTPUT_DIR, df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data
def load_df_from_folder(OUTPUT_DIR):
df_brand_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time'])
if os.path.exists(f'{OUTPUT_DIR}/data_extraction/brand.csv'):
df_brand_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/brand.csv')
df_product_name_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time'])
if os.path.exists(f'{OUTPUT_DIR}/data_extraction/product_name.csv'):
df_product_name_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/product_name.csv')
df_ingredients_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time'])
if os.path.exists(f'{OUTPUT_DIR}/data_extraction/ingredients.csv'):
df_ingredients_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/ingredients.csv')
df_nutritional_values_data = pd.DataFrame(columns=['ID', 'Extracted_Text', 'Price', 'Processing time'])
if os.path.exists(f'{OUTPUT_DIR}/data_extraction/nutritional_values.csv'):
df_nutritional_values_data = pd.read_csv(f'{OUTPUT_DIR}/data_extraction/nutritional_values.csv')
return df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data
def load_csv_files(archive, OUTPUT_DIR):
accepted_files = ['brand.csv', 'product_name.csv', 'ingredients.csv', 'nutritional_values.csv']
for file in archive:
print(os.path.basename(file))
if os.path.basename(file) in accepted_files:
shutil.copy(file, f'{OUTPUT_DIR}/data_extraction')
df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data = load_df_from_folder(OUTPUT_DIR)
return df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data
"""### Function to save data
This function is called when the user clicks on the "Generate data archive" button.
It creates a zip of all CSV files of the f'{OUTPUT_DIR}/data_extraction' folder, and return a download button to the archive.
"""
def generate_archive(OUTPUT_DIR):
# Download all data
archive_name = f'{OUTPUT_DIR}'
shutil.make_archive(archive_name, 'zip', f'{OUTPUT_DIR}/data_extraction')
return gr.DownloadButton(label=f"Download {archive_name}.zip", value=f'{archive_name}.zip', visible=True)
"""### Gradio UI"""
def toggle_row_visibility(show):
if show:
return gr.update(visible=True)
else:
return gr.update(visible=False)
language = 'French'
# Custom CSS to set max height for the rows
custom_css = """
.dataframe-wrap {
max-height: 300px; /* Set the desired height */
overflow-y: scroll;
}
"""
OUTPUT_DIR_value = ""
dummy_data = df_brand_data = df_product_name_data = df_ingredients_data = df_nutritional_values_data = pd.DataFrame()
#dummy_data, OUTPUT_DIR_value, df_brand_data, df_product_name_data, df_ingredients_data, df_nutritional_values_data = load_roamler_excel_file("FDL-Datasets3/FR - Review.xlsm", n_rows=3)
with gr.Blocks(css=custom_css) as fdl_data_extraction_ui:
gr.HTML("<div align='center'><h1>Euroconsumers Food Data Lake</h1>")
gr.HTML("<div align='center'><h2>Data extraction</h2>")
OUTPUT_DIR = gr.State(value=OUTPUT_DIR_value)
with gr.Row():
with gr.Column():
gr.HTML("<h2>Upload Roamler Excel file</h2>")
load_roamler_excel_file_input = gr.File(label="Upload Roamler Excel file", type="filepath")
with gr.Row(visible=False) as dataset_block:
with gr.Column():
gr.HTML("<h2>Dataset summary</h2>")
# Display summary of the dataset - ID, Reference_brand, Reference_product_name, mean_accuracy_score
with gr.Row(elem_classes="dataframe-wrap"):
dataframe_component = gr.DataFrame(value=dummy_data, interactive=False)
with gr.Row(visible=False) as product_detail_block:
with gr.Column():
# Section for product details
gr.HTML("<h1>Data extraction</h1>")
load_csv_files_input = gr.Files(label="Upload extracted data from CSV files")
language = gr.Dropdown(label="Select language", choices=["French", "Dutch", "Spanish", "Italian", "Portuguese"], value="French")
gr.HTML("<h3>Brand</h3>")
extract_brand_button = gr.Button("Extract brand")
df_brand = gr.Dataframe(label="Brand data", scale=2,
column_widths=["10%", "60%", "15%", "15%"],
wrap=True, value=df_brand_data)
gr.HTML("<h3>Product name</h3>")
extract_product_name_button = gr.Button("Extract product_name")
df_product_name = gr.Dataframe(label="Product name data", scale=2,
column_widths=["10%", "60%", "15%", "15%"],
wrap=True, value=df_product_name_data)
gr.HTML("<h3>Ingredients</h3>")
extract_ingredients_button = gr.Button("Extract ingredients")
df_ingredients = gr.Dataframe(label="Ingredients data", scale=2,
column_widths=["10%", "60%", "15%", "15%"],
wrap=True, value=df_ingredients_data)
gr.HTML("<h3>Nutritional values</h3>")
extract_nutritional_values_button = gr.Button("Extract nutritional values")
df_nutritional_values = gr.Dataframe(label="Nutritional data", scale=2,
column_widths=["10%", "60%", "15%", "15%"],
wrap=True, value=df_nutritional_values_data)
# Download
gr.HTML("<h1>Data download</h1>")
generate_merged_file_button = gr.Button("Generate merged file")
generate_archive_button = gr.Button("Generate data archive")
download_button = gr.DownloadButton("Download archive", visible=False)
### Control functions
# Linking the select_dataset change event to update both the gradio DataFrame and product_ids dropdown
load_roamler_excel_file_input.change(load_roamler_excel_file,
inputs=load_roamler_excel_file_input,
outputs=[dataframe_component, OUTPUT_DIR,
df_brand, df_product_name, df_ingredients, df_nutritional_values])
# Toggle visibility of the dataset block
load_roamler_excel_file_input.change(toggle_row_visibility, inputs=load_roamler_excel_file_input, outputs=dataset_block)
load_roamler_excel_file_input.change(toggle_row_visibility, inputs=load_roamler_excel_file_input, outputs=product_detail_block)
load_csv_files_input.change(load_csv_files,
inputs=[load_csv_files_input, OUTPUT_DIR],
outputs=[df_brand, df_product_name, df_ingredients, df_nutritional_values])
# Data extraction
extract_brand_button.click(utils_data_extraction.extract_brand,
inputs=[OUTPUT_DIR, dataframe_component, language],
outputs=df_brand)
extract_product_name_button.click(utils_data_extraction.extract_product_name,
inputs=[OUTPUT_DIR, dataframe_component, language],
outputs=df_product_name)
extract_ingredients_button.click(utils_data_extraction.extract_ingredients,
inputs=[OUTPUT_DIR, dataframe_component, language],
outputs=df_ingredients)
extract_nutritional_values_button.click(utils_data_extraction.extract_nutritional_values,
inputs=[OUTPUT_DIR, dataframe_component, language],
outputs=df_nutritional_values)
generate_merged_file_button.click(utils_assessment.merge_and_save_data, inputs=OUTPUT_DIR)
generate_archive_button.click(generate_archive, inputs=OUTPUT_DIR, outputs=download_button)
fdl_data_extraction_ui.launch(debug=True)
|